CSCI 480 Computer Graphics
 Lecture 5

Viewing and Projection

$$
\begin{aligned}
& \text { Shear Transformation } \\
& \text { Camera Positioning } \\
& \text { Simple Parallel Projections } \\
& \text { Simple Perspective Projections } \\
& \text { [Angel, Ch. 5] }
\end{aligned}
$$

January 25, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Reminder: Affine Transformations

- Given a point [x y z], form homogeneous coordinates [x y z 1].

- The transformed point is [$\left.x^{\prime} y^{\prime} z^{\prime}\right]$.

Transformation Matrices in OpenGL

- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices)
- In gILoadMatrixf(GLfloat *m);
$\mathrm{m}=\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{16}\right\}$
represents
$\left[\begin{array}{cccc}m_{1} & m_{5} & m_{9} & m_{13} \\ m_{2} & m_{6} & m_{10} & m_{14} \\ m_{3} & m_{7} & m_{11} & m_{15} \\ m_{4} & m_{8} & m_{12} & m_{16}\end{array}\right]$
- Some books transpose all matrices!

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

Specification via Shear Angle

- $\cot (\theta)=\left(x^{\prime}-x\right) / y$
- $x^{\prime}=x+y \cot (\theta)$
- $y^{\prime}=y$
- $z^{\prime}=\mathrm{z}$
$H_{x}(\theta)=\left[\begin{array}{cccc}1 & \cot (\theta) & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Specification via Ratios

- For example, shear in both x and z direction
- Leave y fixed
- Slope α for x -shear, γ for z -shear
- Solve
- Yields

$$
H_{x, z}(\alpha, \gamma)\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y \\
z+\gamma y \\
1
\end{array}\right]
$$

$$
H_{x, z}(\alpha, \gamma)=\left[\begin{array}{cccc}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \gamma & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Composing Transformations

- Let $p=A q$, and $q=B$.
- Then $p=(A B) s$.

Composing Transformations

- Fact: Every affine transformation is a composition of rotations, scalings, and translations
- So, how do we compose these to form an x-shear?
- Exercise!

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Transform Camera = Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
- e = eye point
- $\mathrm{f}=$ focus point
- u = up vector

OpenGL code

void display()
\{
gIClear (GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);
gIMatrixMode (GL_MODELVIEW); gILoadldentity();
gluLookAt ($\mathrm{e}_{\mathrm{x}}, \mathrm{e}_{\mathrm{y}}, \mathrm{e}_{\mathrm{z}}, \mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}, \mathrm{f}_{\mathrm{z}}, \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}$);
gITranslatef(x, y, z);
renderBunny(); glutSwapBuffers();

Implementing the Look-At Function

Plan:

1. Transform world frame to camera frame

- Compose a rotation R with translation T
- W = TR

2. Invert W to obtain viewing transformation V
$-\mathrm{V}=\mathrm{W}^{-1}=(\mathrm{T} R)^{-1}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$

- Derive R, then T, then $R^{-1} T^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $n=(f-e) /|f-e|$ is unit normal to view plane
- Therefore, R maps $\left[\begin{array}{lll}0 & 0 & -1\end{array}\right]^{\top}$ to $\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{\top}$

World Frame to Camera Frame II

- R maps $[0,1,0]^{\top}$ to projection of u onto view plane
- This projection v equals:
$-\alpha=(u \cdot n) /|n|=u \cdot n$
$-v_{0}=u-\alpha n$
$-\mathrm{v}=\mathrm{v}_{0} /\left|\mathrm{v}_{0}\right|$

World Frame to Camera Frame III

- Set w to be orthogonal to n and v
- $w=n \times v$
- ($w, v,-n$) is right-handed

Summary of Rotation

- gluLookAt($\left.e_{x}, e_{y}, e_{z}, f_{x}, f_{y}, f_{z}, u_{x}, u_{y}, u_{z}\right) ;$
- $n=(f-e) /|f-e|$
- $v=(u-(u \cdot n) n) /|u-(u \cdot n) n|$
- $w=n \times v$
- Rotation must map:
- $(1,0,0)$ to w
- $(0,1,0)$ to v
- $(0,0,-1)$ to n

World Frame to Camera Frame IV

- Translation of origin to $\mathrm{e}=\left[\begin{array}{llll}\mathrm{e}_{\mathrm{x}} & \mathrm{e}_{\mathrm{y}} & \mathrm{e}_{\mathrm{z}} & 1\end{array}\right]^{\top}$

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Frame to Rendering Frame

- $V=W^{-1}=(T R)^{-1}=R^{-1} T^{-1}$
- R is rotation, so $R^{-1}=R^{\top}$

$$
R^{-1}=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
-n_{x} & -n_{y} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- T is translation, so T^{-1} negates displacement

$$
T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Putting it Together

- Calculate $\mathrm{V}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$

$$
V=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & -w_{x} e_{x}-w_{y} e_{y}-w_{z} e_{z} \\
v_{x} & v_{y} & v_{z} & -v_{x} e_{x}-v_{y} e_{y}-v_{z} e_{z} \\
-n_{x} & -n_{y} & -n_{z} & n_{x} e_{x}+n_{y} e_{y}+n_{z} e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- This is different from book [Angel, Ch. 5.3.2]
- There, u, v, n are right-handed (here: $u, v,-n$)

Other Viewing Functions

- Roll (about z), pitch (about x), yaw (about y)

- Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

- Recall geometric pipeline

- Projection takes 3D to 2D
- Projections are not invertible
- Projections also described by 4×4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane

Parallel Projection

- Problem: objects far away do not appear smaller
- Can lead to "impossible objects" :

Orthographic Projection

- A special kind of parallel projection: projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)

Orthographic Projection Matrix

- Project onto $z=0$
- $x_{p}=x, y_{p}=y, z_{p}=0$
- In homogenous coordinates

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Perspective

- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings:

Lascaux, France

Discovery of Perspective

- Foundation in geometry (Euclid)

Mural from
Pompeii, Italy

Middle Ages

- Art in the service of religion
- Perspective abandoned or forgotten

Ottonian manuscript, ca. 1000

Renaissance

- Rediscovery, systematic study of perspective

Filippo Brunelleschi Florence, 1415

Projection (Viewing) in OpenGL

- Remember: camera is pointing in the negative z direction

Orthographic Viewing in OpenGL

- gIOrtho(xmin, xmax, ymin, ymax, near, far)

$$
z_{\min }=\text { near, } z_{\max }=\text { far }
$$

Perspective Viewing in OpenGL

- Two interfaces: gIFrustum and gluPerspective
- glFrustum(xmin, xmax, ymin, ymax, near, far);

$$
Z_{\min }=\text { near, } Z_{\max }=\text { far }
$$

Field of View Interface

- gluPerspective(fovy, aspectRatio, near, far);
- near and far as before
- aspectRatio = w/h
- Fovy specifies field of view as height (y) angle

OpenGL code

void reshape(int x, int y)
$\{$
gIViewport(0, 0, x, y);
glMatrixMode(GL_PROJECTION); gILoadldentity();
gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0); \}

Perspective Viewing Mathematically

- $\mathrm{d}=$ focal length
- $y / z=y_{p} / d$ so $y_{p}=y /(z / d)=y d / z$
- Note that y_{p} is non-linear in the depth z !

Exploiting the $4^{\text {th }}$ Dimension

- Perspective projection is not affine:

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]
$$

has no solution for M

- Idea: exploit homogeneous coordinates

$$
p=w\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { for arbitrary } \mathrm{w} \neq 0
$$

Perspective Projection Matrix

- Use multiple of point

$$
(z / d)\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z \\
z
\end{array}\right]
$$

- Solve

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z \\
z
\end{array}\right] \text { with } \quad M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{d} & 0
\end{array}\right]
$$

Projection Algorithm

Input: 3D point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) to project

1. Form $[x y z 1]^{\top}$
2. Multiply M with $[\mathrm{x} \text { y z } 1]^{\top}$; obtaining $[\mathrm{X} Y \mathrm{Z} \text { W] }]^{\top}$
3. Perform perspective division:
$\mathrm{X} / \mathrm{W}, \mathrm{Y} / \mathrm{W}, \mathrm{Z} / \mathrm{W}$
Output: (X / W, Y / W, Z / W)
(last coordinate will be d)

Perspective Division

- Normalize $\left[x\right.$ y z w] ${ }^{\top}$ to $[(x / w)(y / w)(z / w) 1]^{\top}$
- Perform perspective division after projection

- Projection in OpenGL is more complex (includes clipping)

