
1

February 1, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

CSCI 480 Computer Graphics
Lecture 7

Polygon Meshes
and Implicit Surfaces

Polygon Meshes
Implicit Surfaces
Constructive Solid Geometry
[Angel Ch. 12.1-12.3]

2

• An equation for a sphere
is possible, but how about an
equation for a telephone,
or a face?

• Complexity is achieved using simple pieces
– polygons, parametric surfaces, or implicit surfaces

• Goals
–
–
–
–

Model anything with arbitrary precision (in principle)
Easy to build and modify
Efficient computations (for rendering, collisions, etc.)
Easy to implement (a minor consideration...)

Modeling Complex
Shapes

Source: Wikipedia

3

What do we need from shapes
in Computer Graphics?

•
•
•
•
•
•

Local control of shape for modeling
Ability to model what we need
Smoothness and continuity
Ability to evaluate derivatives
Ability to do collision detection
Ease of rendering

No single technique solves all problems!

4

Shape Representations

Polygon Meshes
Parametric Surfaces
Implicit Surfaces

5

Polygon Meshes
• Any shape can be modeled out of

polygons
– if you use enough of them…

• Polygons with how many sides?
– Can use triangles, quadrilaterals,

pentagons, … n-gons
– Triangles are most common.
– When > 3 sides are used, ambiguity about what to do

when polygon nonplanar, or concave, or self-
intersecting.

• Polygon meshes are built out of
– vertices (points)
– edges (line segments between vertices)
– faces (polygons bounded by edges)

edges

vertices

faces

6

Polygon Models in OpenGL

• for faceted shading
glNormal3fv(n);
glBegin(GL_POLYGONS);
glVertex3fv(vert1);
glVertex3fv(vert2);
glVertex3fv(vert3);
glEnd();

• for smooth shading
glBegin(GL_POLYGONS);
glNormal3fv(normal1);
glVertex3fv(vert1);
glNormal3fv(normal2);
glVertex3fv(vert2);
glNormal3fv(normal3);
glVertex3fv(vert3);
glEnd();

7

Normals

8

Where Meshes Come From

• Specify manually
– Write out all polygons
– Write some code to generate them
– Interactive editing: move vertices in space

• Acquisition from real objects
– Laser scanners, vision systems
– Generate set of points on the surface
– Need to convert to polygons

9

Data Structures for Polygon Meshes
• Simplest (but dumb)

– float triangle[n][3][3]; (each triangle stores 3 (x,y,z) points)
– redundant: each vertex stored multiple times

• Vertex List, Face List
– List of vertices, each vertex consists of (x,y,z) geometric (shape)

info only
– List of triangles, each a triple of vertex id’s (or pointers) topological

(connectivity, adjacency) info only
Fine for many purposes, but finding the faces adjacent to a vertex

takes O(F) time for a model with F faces. Such queries are
important for topological editing.

• Fancier schemes:
Store more topological info so adjacency queries can be answered in

O(1) time.
Winged-edge data structure – edge structures contain all topological

info (pointers to adjacent vertices, edges, and faces).

10

A File Format for Polygon Models: OBJ
OBJ file for a 2x2x2 cube
v -1.0 1.0 1.0 - vertex 1
v
v

-1.0 -1.0 1.0
1.0 -1.0 1.0

- vertex 2
- vertex 3

v 1.0 1.0 1.0 -…
v -1.0 1.0 -1.0
v -1.0 -1.0 -1.0
v 1.0 -1.0 -1.0
v 1.0 1.0 -1.0
f
f

1 2 3 4
8 7 6 5

f
f
f
f

4 3 7 8
5 1 4 8
5 6 2 1
2 6 7 3

Syntax:

v x y z - a vertex at (x,y,z)

f v1 v2 … vn - a face with
 vertices v1, v2, … vn

anything - comment

11

How Many Polygons to Use?

12

Why Level of Detail?
• Different models for near and far objects
• Different models for rendering and collision detection
• Compression of data recorded from the real world

We need automatic algorithms for reducing the polygon
count without

• losing key features
• getting artifacts in the silhouette
• popping

13

Problems with Triangular Meshes?

• Need a lot of polygons to represent smooth shapes
• Need a lot of polygons to represent detailed shapes

• Hard to edit
• Need to move individual vertices
• Intersection test? Inside/outside test?

14

Shape Representations

Polygon Meshes
Parametric Surfaces
Implicit Surfaces

15

Parametric Surfaces

– e.g. plane, cylinder, bicubic surface, swept surface

p(u,v) = [x(u,v), y(u,v), z(u,v)]

Bezier patch

16

Parametric Surfaces

– e.g. plane, cylinder, bicubic surface, swept surface

the Utah teapot

p(u,v) = [x(u,v), y(u,v), z(u,v)]

17

Parametric Surfaces
Why better than polygon meshes?

– Much more compact
– More convenient to control --- just edit control points
– Easy to construct from control points

What are the problems?
–
–
–
–

Work well for smooth surfaces
Must still split surfaces into discrete number of patches
Rendering times are higher than for polygons
Intersection test? Inside/outside test?

18

Shape Representations

Polygon Meshes
Parametric Surfaces
Implicit Surfaces

19

Two Ways to Define a Circle

Parametric

x = f(u) = r cos (u)
y = g(u) = r sin (u)

Implicit

F(x,y) = x² + y² - r²

u

F>0
F=0

F<0

20

sphere with radius r : F(x,y,z) = x2+y2+z2-r2 = 0

– terrible for iterating over the surface
– great for intersections, inside/outside test

• Implicit surface: F(x,y,z) = 0
– e.g. plane, sphere, cylinder, quadric, torus, blobby models

•	 well defined inside/outside
• polygons and parametric surfaces
 do not have this information

• Computing is hard:
implicit functions for a cube?
telephone?

Implicit Surfaces

21

ellipsoid parabolic

cylinderconehyperboloids

Quadric Surfaces

F(x,y,z) = ax2+by2+cz2+2fyz+2gzx+2hxy+2px+2qy+2rz+d = 0

22

What Implicit Functions are Good For

	 	 	 F<0?
F=0?

Inside/Outside Test

X + kV
F>0?

X

F(X + kV) = 0

Ray - Surface Intersection Test

23

Surfaces from Implicit Functions
• Constant Value Surfaces are called

(depending on whom you ask):
– constant value surfaces
– level sets
– isosurfaces

• Nice Feature: you can add them! (and other tricks)

– this merges the shapes
– When you use this with spherical exponential potentials, it’s

called Blobs, Metaballs, or Soft Objects. Great for modeling	 animals.

24

Blobby Models

25

How to draw implicit surfaces?

• It’s easy to ray trace implicit surfaces
– because of that easy intersection test

• Volume Rendering can display them
• Convert to polygons: the Marching Cubes

algorithm
– Divide space into cubes
– Evaluate implicit function at each cube vertex
– Do root finding or linear interpolation along each

edge
– Polygonize on a cube-by-cube basis

26

Constructive Solid Geometry (CSG)

• Generate complex shapes with basic building blocks
• Machine an object - saw parts off,
 drill holes, glue pieces together

27

Constructive Solid Geometry (CSG)

Source: Wikipedia

union difference intersection

the merger
of two objects

into one

the subtraction
of one object
from another

the portion
common to
both objects

28

Constructive Solid Geometry (CSG)

• Generate complex shapes with basic building blocks
• Machine an object - saw parts off,
 drill holes, glue pieces together

• This is sensible for objects that are actually made
 that way (human-made, particularly machined objects)

29

A CSG Train

Brian Wyvill & students, Univ. of Calgary

30

Negative Objects
Use point-by-point boolean functions

– remove a volume by using a negative object
– e.g. drill a hole by subtracting a cylinder

Subtract From

To get

Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))

31

Set Operations
• UNION:

• INTERSECTION:

• SUBTRACTION:

Inside(A) || Inside(B)
 Join A and B

Inside(A) && Inside(B)
 Chop off any part of A that sticks out of B

• Inside(A) && (! Inside(B))
 Use B to Cut A

Examples:
– Use cylinders to drill holes
– Use rectangular blocks to cut slots
– Use half-spaces to cut planar faces
– Use surfaces swept from curves as jigsaws, etc.

32

Implicit Functions for Booleans

• Recall the implicit function for a solid: F(x,y,z)<0
• Boolean operations are replaced by arithmetic:

– MAX
– MIN
– MINUS

replaces AND (intersection)
replaces OR (union)
replaces NOT(unary subtraction)

• Thus
– F(Intersect(A,B)) = MAX(F(A),F(B))
– F(Union(A,B)) = MIN(F(A),F(B))
– F(Subtract(A,B)) = MAX(F(A), -F(B))

F1<0

F1<0

F2<0

F2<0

A B

33

CSG Trees

• Set operations yield tree-based
representation

Source: Wikipedia

34

Implicit Surfaces

– Good for smoothly blending multiple components
– Clearly defined solid along with its boundary
– Intersection test and Inside/outside test are easy

–
–
–
–

Need to polygonize to render --- expensive
Interactive control is not easy
Fitting to real world data is not easy
Always smooth

35

Summary

– Polygonal Meshes

– Parametric Surfaces

– Implicit Surfaces

– Constructive Solid Geometry

