CSCI 480 Computer Graphics Lecture 9

Lighting and Shading

Light Sources Phong Illumination Model Normal Vectors [Angel Ch. 6.1-6.4]

February 8, 2012 Jernej Barbic University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Outline

- · Global and Local Illumination
- Normal Vectors
- Light Sources
- · Phong Illumination Model

Global Illumination

- · Ray tracing
- · Radiosity
- · Photon Mapping
- · Follow light rays through a scene
- · Accurate, but expensive (off-line)

Tobias R. Metoc

Raytracing Example

Martin Moeck, Siemens Lighting

Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

Local Illumination

- · Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- · GPU shaders
- · Pixar Renderman (offline)

Local Illumination

- · Approximate model
- Local interaction between light, surface, viewer
- Color determined only based on surface normal, relative camera position and relative light position

· What effects does this ignore?

Outline

- · Global and Local Illumination
- Normal Vectors
- · Light Sources
- · Phong Illumination Model

8

Normal Vectors

- Must calculate and specify the normal vector
 Even in OpenGL!
- · Two examples: plane and sphere

9

Normals of a Plane, Method I

- Method I: given by ax + by + cz + d = 0
- Let p₀ be a known point on the plane
- · Let p be an arbitrary point on the plane
- Recall: $u \cdot v = 0$ if and only if u orthogonal to v
- $\mathbf{n} \cdot (\mathbf{p} \mathbf{p}_0) = \mathbf{n} \cdot \mathbf{p} \mathbf{n} \cdot \mathbf{p}_0 = 0$
- Consequently $n_0 = [a \ b \ c]^T$
- Normalize to $n = n_0/|n_0|$

10

Normals of a Plane, Method II

- Method II: plane given by p_0 , p_1 , p_2
- · Points must not be collinear
- Recall: u x v orthogonal to u and v
- $n_0 = (p_1 p_0) \times (p_2 p_0)$
- · Order of cross product determines orientation
- Normalize to $n = n_0/|n_0|$

11

Normals of Sphere

- Implicit Equation $f(x, y, z) = x^2 + y^2 + z^2 1 = 0$
- Vector form: $f(p) = p \cdot p 1 = 0$
- · Normal given by gradient vector

$$n_0 = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = 2p$$

• Normalize $n_0/|n_0| = 2p/2 = p$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, n, and r lie in the same plane
- Assume |I| = |n| = 1, guarantee |r| = 1

 $I \cdot n = \cos(\theta) = n \cdot r$

 $r = \alpha I + \beta n$

Solution: $\alpha = -1$ and $\beta = 2 (I \cdot n)$

 $r = 2 (I \cdot n) n - I$

13

Outline

- · Global and Local Illumination
- Normal Vectors
- Light Sources
- · Phong Illumination Model

4

Light Sources and Material Properties

- · Appearance depends on
 - Light sources, their locations and properties
 - Material (surface) properties:

- Viewer position

15

Types of Light Sources

- Ambient light: no identifiable source or direction
- · Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in cent

16

Point Source

- Given by a point p₀
- · Light emitted equally in all directions
- · Intensity decreases with square of distance

$$I \propto \frac{1}{|p - p_0|^2}$$

17

Limitations of Point Sources

- · Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- · Similar problems with highlights
- · Compensate with attenuation

$$\frac{1}{a+bq+cq^2} \quad \begin{array}{ll} {\rm q = distance} \; |{\rm p-p_0}| \\ {\rm a, \, b, \, c \, constants} \end{array}$$

- · Softens lighting
- · Better with ray tracing
- · Better with radiosity

Distant Light Source

- · Given by a direction vector
- · Simplifies some calculations
- In OpenGL:
 - Point source [x y z 1]^T
 - Distant source [x y z 0]T

19

Spotlight

- · Most complex light source in OpenGL
- · Light still emanates from point
- Cut-off by cone determined by angle θ

20

Global Ambient Light

- · Independent of light source
- · Lights entire scene
- · Computationally inexpensive
- Simply add [G_R G_G G_B] to every pixel on every object
- Not very interesting on its own.
 A cheap hack to make the scene brighter.

21

Outline

- · Global and Local Illumination
- Normal Vectors
- · Light Sources
- · Phong Illumination Model

22

Phong Illumination Model

- · Calculate color for arbitrary point on surface
- · Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = unit vector to light source

- n = surface normal
- v = unit vector to viewer
- r = reflection of I at p (determined by I and n)

23

Phong Illumination Overview

- 1. Start with global ambient light $[G_R G_G G_B]$
- 2. Add contributions from each light source
- 3. Clamp the final result to [0, 1]
- · Calculate each color channel (R,G,B) separately
- Light source contributions decomposed into
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

$$I_a = k_a L_a$$

- · Intensity of ambient light is uniform at every point
- Ambient reflection coefficient k_a, 0 ≤ k_a ≤ 1
- · May be different for every surface and r,g,b
- · Determines reflected fraction of ambient light
- L_a = ambient component of light source (can be set to different value for each light source)
- Note: La is not a physically meaningful quantity

Diffuse Reflection

- · Diffuse reflector scatters light
- · Assume equally all direction
- · Called Lambertian surface
- Diffuse reflection coefficient k_d , $0 \le k_d \le 1$
- · Angle of incoming light is important

Lambert's Law

Intensity depends on angle of incoming light.

Diffuse Light Intensity Depends On Angle Of Incoming Light

Recall

I = unit vector to light n = unit surface normal θ = angle to normal

· With attenuation:

$$I_d = \frac{k_d L_d}{a + bq + cq^2} (l \cdot n)$$

 $I_d = \frac{k_d L_d}{a + bq + cq^2} (l \cdot n) \qquad \mbox{q = distance to light source,} \\ \mbox{L}_{\rm d} = \mbox{diffuse component of light}$

Specular Reflection

- Specular reflection coefficient k_s , $0 \le k_s \le 1$
- · Shiny surfaces have high specular coefficient
- · Used to model specular highlights
- Does not give mirror effect (need other techniques)

specular reflection

specular highlights

Specular Reflection

 Recall v = unit vector to camera **r** = unit reflected vector ϕ = angle between \mathbf{v} and \mathbf{r}

 $I_s = k_s L_s (\cos \phi)^{\alpha}$

• $\cos \phi = \mathbf{v} \cdot \mathbf{r}$

- L_s is specular component of light
- α is shininess coefficient
- · Can add distance term as well

Summary of Phong Model

- Light components for each color:
 - Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- · Distance q for surface point from light source

$$I = \frac{1}{a + bq + cq^2} (k_d L_d (l \cdot n) + k_s L_s (r \cdot v)^{\alpha}) + k_a L_a$$

I = unit vector to light r = I reflected about nn = surface normal v = vector to viewer

32

BRDF

- · Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading

Lighting properties of a human face were captured and face re-rendered;
Institute for Creative Technologies

Summary

- · Global and Local Illumination
- Normal Vectors
- · Light Sources
- · Phong Illumination Model