CSCI 480 Computer Graphics Lecture 9

Lighting and Shading

Light Sources Phong Illumination Model Normal Vectors [Angel Ch. 6.1-6.4]

February 8, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/-ibarbic/cs480-s12/

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Global Illumination

- Ray tracing
- Radiosity
- Photon Mapping
- Follow light rays through a scene

Tobias R. Metoc

- Accurate, but expensive (off-line)

Raytracing Example

Martin Moeck,
Siemens Lighting

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)

- What effects does this ignore?

Normal Vectors

- Must calculate and specify the normal vector - Even in OpenGL!
- Two examples: plane and sphere

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Normals of a Plane, Method I

- Method I: given by ax + by +cz + d=0
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ if and only if u orthogonal to v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $n_{0}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$
- Normalize to $n=n_{0} /\left|n_{0}\right|$

Normals of a Plane, Method II

- Method II: plane given by $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$
- Points must not be collinear
- Recall: $u x v$ orthogonal to u and v
- $\mathrm{n}_{0}=\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \mathrm{x}\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
n_{0}=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 p
$$

- Normalize $\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|=2 \mathrm{p} / 2=\mathrm{p}$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: $\boldsymbol{I}, \boldsymbol{n}$, and \boldsymbol{r} lie in the same plane
- Assume $|\boldsymbol{I}|=|\boldsymbol{n}|=1$, guarantee $|\boldsymbol{r}|=1$

$$
\begin{aligned}
& \boldsymbol{I} \cdot \boldsymbol{n}=\cos (\theta)=\boldsymbol{n} \cdot \boldsymbol{r} \\
& \boldsymbol{r}=\alpha \boldsymbol{I}+\beta \boldsymbol{n}
\end{aligned}
$$

Solution: $\alpha=-1$ and

$$
\beta=2(I \cdot n)
$$

$$
r=2(I \cdot n) n-I
$$

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties:

- Viewer position

Point Source

- Given by a point p_{0}
- Light emitted equally in all directions
- Intensity decreases with square of distance

$$
I \propto \frac{1}{\left|p-p_{0}\right|^{2}}
$$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in cent

Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation

$$
\begin{array}{ll}
\frac{1}{a+b q+c q^{2}} & \begin{array}{l}
\mathrm{q}=\text { distance }\left|\mathrm{p}-\mathrm{p}_{\mathrm{o}}\right| \\
\mathrm{a}, \mathrm{~b}, \mathrm{c} \text { constants }
\end{array}
\end{array}
$$

- Softens lighting
- Better with ray tracing
- Better with radiosity

Distant Light Source

- Given by a direction vector
- Simplifies some calculations
- In OpenGL:
- Point source $\left.\left[\begin{array}{lll}x & y & z\end{array}\right]\right]^{\top}$
- Distant source [x y z 0] ${ }^{\top}$

Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add $\left[G_{R} G_{G} G_{B}\right]$ to every pixel on every object
- Not very interesting on its own A cheap hack to make the scene brighter.

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and $\mathbf{I}, \mathbf{n}, \mathbf{v}$:

I = unit vector to light source n = surface normal $\mathbf{v}=$ unit vector to viewer $\mathbf{r}=$ reflection of \mathbf{I} at \mathbf{p} (determined by I and \mathbf{n})

Phong Illumination Overview

1. Start with global ambient light $\left[G_{R} G_{G} G_{B}\right]$
2. Add contributions from each light source
3. Clamp the final result to $[0,1]$

- Calculate each color channel ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) separately
- Light source contributions decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

$$
\mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \mathrm{~L}_{\mathrm{a}}
$$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient $\mathrm{k}_{\mathrm{a}}, 0 \leq \mathrm{k}_{\mathrm{a}} \leq 1$
- May be different for every surface and $\mathrm{r}, \mathrm{g}, \mathrm{b}$
- Determines reflected fraction of ambient light
- $L_{a}=$ ambient component of light source (can be set to different value for each light source)
- Note: L_{a} is not a physically meaningful quantity

25

Lambert's Law

Intensity depends on angle of incoming light.

Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}}, 0 \leq \mathrm{k}_{\mathrm{s}} \leq 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give mirror effect (need other techniques)

specular reflection

specular highlights

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $\mathrm{k}_{\mathrm{d}}, 0 \leq \mathrm{k}_{\mathrm{d}} \leq 1$
- Angle of incoming light is important

Diffuse Light Intensity Depends On Angle Of Incoming Light

- Recall
$I=$ unit vector to light
$\boldsymbol{n}=$ unit surface normal
$\theta=$ angle to normal
- $\cos \theta=\boldsymbol{I} \cdot \boldsymbol{n}$
- $\mathrm{I}_{\mathrm{d}}=\mathrm{k}_{\mathrm{d}} \mathrm{L}_{\mathrm{d}}(I \cdot \boldsymbol{n})$
- With attenuation:
$I_{d}=\frac{k_{d} L_{d}}{a+b q+c q^{2}}(l \cdot n) \quad \begin{aligned} & \mathrm{q}=\text { distance to light source, } \\ & \mathrm{L}_{\mathrm{d}}=\text { diffuse component of light }\end{aligned}$

Specular Reflection

- Recall
$\boldsymbol{v}=$ unit vector to camera
$r=$ unit reflected vector
$\phi=$ angle between \boldsymbol{v} and \boldsymbol{r}
- $\cos \phi=\boldsymbol{v} \cdot \boldsymbol{r}$

- $I_{s}=k_{s} L_{s}(\cos \phi)^{\alpha}$
- L_{s} is specular component of light
- α is shininess coefficient
- Can add distance term as well

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading

Lighting properties of a human face were captured and face re-rendered; Institute for Creative Technologies

Summary of Phong Model

- Light components for each color:
- Ambient $\left(L_{a}\right)$, diffuse $\left(L_{d}\right)$, specular $\left(L_{s}\right)$
- Material coefficients for each color:
- Ambient (k_{a}), diffuse (k_{d}), specular (k_{s})
- Distance q for surface point from light source
$I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(l \cdot n)+k_{s} L_{s}(r \cdot v)^{\alpha}\right)+k_{a} L_{a}$

$$
\begin{array}{ll}
\boldsymbol{I}=\text { unit vector to light } & \boldsymbol{r}=\boldsymbol{I} \text { reflected about } \boldsymbol{n} \\
\boldsymbol{n}=\text { surface normal } & \boldsymbol{v}=\text { vector to viewer }
\end{array}
$$

Summary

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

