CSCI 480 Computer Graphics Lecture 9

Lighting and Shading

Light Sources

Phong Illumination Model

Normal Vectors

[Angel Ch. 6.1-6.4]

February 8, 2012
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Global Illumination

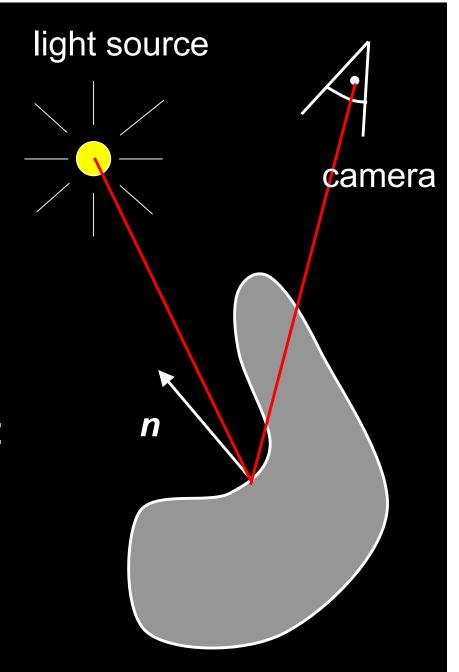
- Ray tracing
- Radiosity
- Photon Mapping

Tobias R. Metoc

- Follow light rays through a scene
- Accurate, but expensive (off-line)

Raytracing Example

Martin Moeck, Siemens Lighting


Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual


Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Color determined only based on surface normal, relative camera position and relative light position

What effects does this ignore?

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Normal Vectors

- Must calculate and specify the normal vector
 - Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by ax + by + cz + d = 0
- Let p₀ be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: u · v = 0 if and only if u orthogonal to v
- \bullet $\mathbf{n} \cdot (\mathbf{p} \mathbf{p}_0) = \mathbf{n} \cdot \mathbf{p} \mathbf{n} \cdot \mathbf{p}_0 = 0$
- Consequently n₀ = [a b c]^T
- Normalize to $n = n_0/|n_0|$

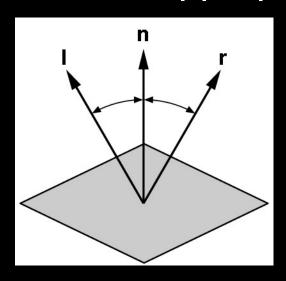
Normals of a Plane, Method II

- Method II: plane given by p₀, p₁, p₂
- Points must not be collinear
- Recall: u x v orthogonal to u and v

•
$$n_0 = (p_1 - p_0) \times (p_2 - p_0)$$

- Order of cross product determines orientation
- Normalize to n = n₀/|n₀|

Normals of Sphere


- Implicit Equation $f(x, y, z) = x^2 + y^2 + z^2 1 = 0$
- Vector form: $f(p) = p \cdot p 1 = 0$
- Normal given by gradient vector

$$n_0 = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = 2p$$

• Normalize $n_0/|n_0| = 2p/2 = p$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, n, and r lie in the same plane
- Assume |*I*| = |*n*| = 1, guarantee |*r*| = 1

$$I \cdot n = \cos(\theta) = n \cdot r$$

$$r = \alpha I + \beta n$$

Solution:
$$\alpha = -1$$
 and $\beta = 2 (\mathbf{I} \cdot \mathbf{n})$

$$r = 2 (I \cdot n) n - I$$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Light Sources and Material Properties

- Appearance depends on
 - Light sources, their locations and properties
 - Material (surface) properties:

Viewer position

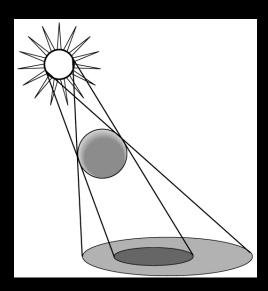
Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)

Point Source

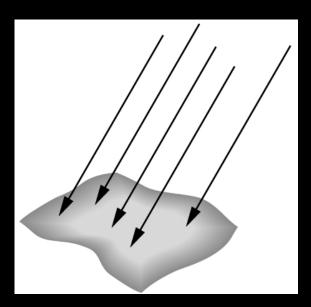
- Given by a point p₀
- Light emitted equally in all directions
- Intensity decreases with square of distance

$$I \propto \frac{1}{|p - p_0|^2}$$

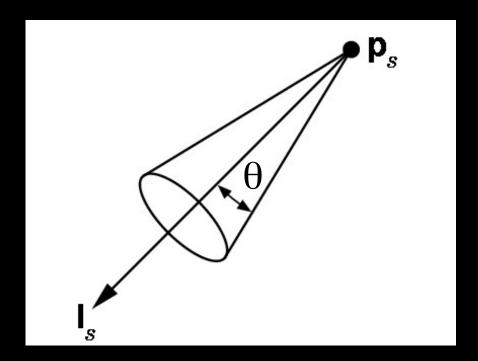

Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation

$$\frac{1}{a+bq+cq^2}$$


 $q = distance | p - p_0 |$ $\frac{1}{a+bq+cq^2}$ a, b, c constants

- Softens lighting
- Better with ray tracing
- Better with radiosity


Distant Light Source

- Given by a direction vector
- Simplifies some calculations
- In OpenGL:
 - Point source [x y z 1]^T
 - Distant source [x y z 0]^T

Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

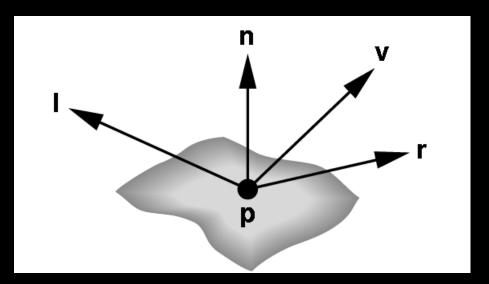
Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add [G_R G_G G_B] to every pixel on every object
- Not very interesting on its own.
 A cheap hack to make the scene brighter.

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Phong Illumination Model


- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = unit vector to light source

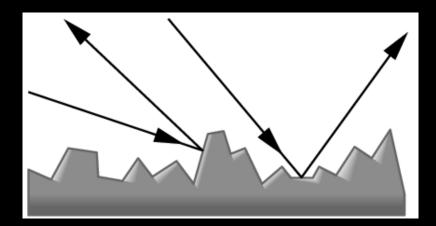
n = surface normal

v = unit vector to viewer

r = reflection of I at p
 (determined by I and n)

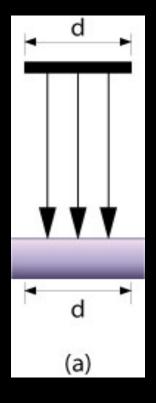
Phong Illumination Overview

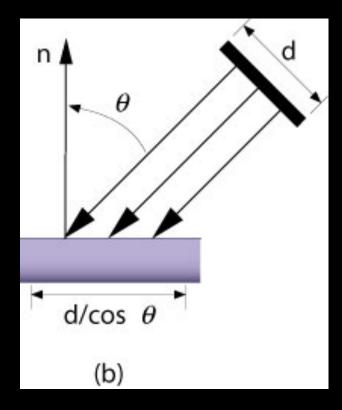
- 1. Start with global ambient light [G_R G_G G_B]
- 2. Add contributions from each light source
- 3. Clamp the final result to [0, 1]
- Calculate each color channel (R,G,B) separately
- Light source contributions decomposed into
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties


Ambient Reflection

$$I_a = k_a L_a$$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient k_a, 0 ≤ k_a ≤ 1
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- L_a = ambient component of light source
 (can be set to different value for each light source)
- Note: L_a is not a physically meaningful quantity


Diffuse Reflection

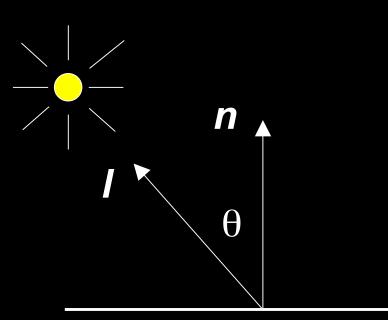

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient k_d, 0 ≤ k_d ≤ 1
- Angle of incoming light is important

Lambert's Law

Intensity depends on angle of incoming light.

Diffuse Light Intensity Depends On Angle Of Incoming Light

Recall

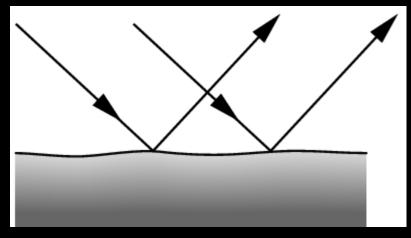

I = unit vector to light

n = unit surface normal

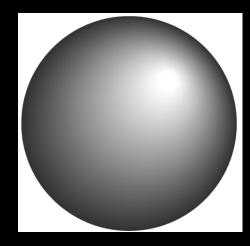
 θ = angle to normal

• $\cos \theta = I \cdot n$

•
$$I_d = K_d L_d (I \cdot n)$$


With attenuation:

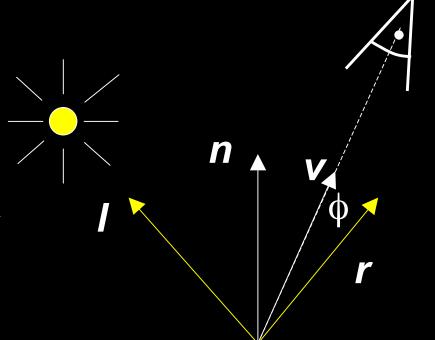
$$I_d = \frac{k_d L_d}{a + bq + cq^2} (l \cdot n)$$


q = distance to light source, L_d = diffuse component of light

Specular Reflection

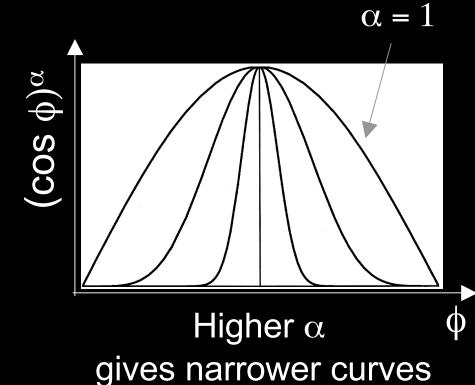
- Specular reflection coefficient k_s, 0 ≤ k_s ≤ 1
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give mirror effect (need other techniques)

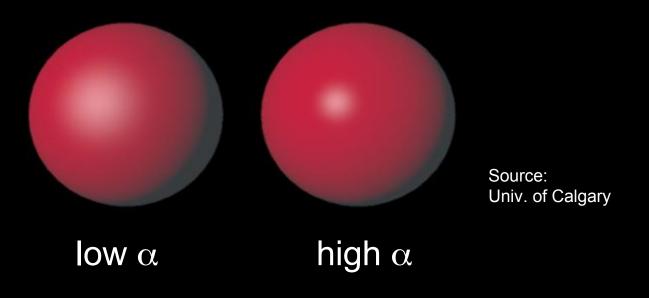
specular reflection


specular highlights

Specular Reflection

- Recall
 - v = unit vector to camera
 - **r** = unit reflected vector
 - ϕ = angle between \mathbf{v} and \mathbf{r}
- $\cos \phi = \mathbf{v} \cdot \mathbf{r}$

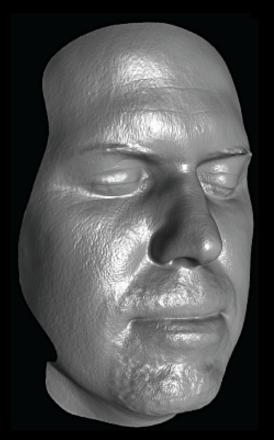

•
$$I_s = k_s L_s (\cos \phi)^{\alpha}$$


- L_s is specular component of light
- α is shininess coefficient
- Can add distance term as well

Shininess Coefficient

- $I_s = k_s L_s (\cos \phi)^{\alpha}$
- α is the shininess coefficient

Summary of Phong Model


- Light components for each color:
 - Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$I = \frac{1}{a + bq + cq^2} (k_d L_d (l \cdot n) + k_s L_s (r \cdot v)^{\alpha}) + k_a L_a$$

I = unit vector to light r = I reflected about nn = surface normal v = vector to viewer

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading

Lighting properties of a human face were captured and face re-rendered; Institute for Creative Technologies

Summary

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model