CSCI 480 Computer Graphics
Lecture 12

Clipping

Line Clipping
Polygon Clipping
Clipping in Three Dimensions [Angel Ch. 7.1-7.7]

February 22, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/-ibarbic/cs $480-$-s12l

The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer) - most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity) - OpenGL uses 3D clipping

Perspective Normalization

- Solution:
- Implement perspective projection by perspective normalization and orthographic projection
- Perspective normalization is a homogeneous transformation

The Normalized Frustum

- OpenGL uses $-1 \leq x, y, z \leq 1$ (others possible)
- Clip against resulting cube
- Clipping against arbitrary (programmerspecified) planes requires more general algorithms and is more expensive

The Viewport Transformation

- Transformation sequence again:

1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords.
5. Orthographic projection (setting $\mathrm{z}_{\mathrm{p}}=0$)
6. Viewport transformation: to screen coordinates

- Viewport transformation can distort
- Solution: pass the correct window aspect ratio to gluPerspective

Clipping

- General: 3D object against cube
- Simpler case:
- In 2D: line against square or rectangle
- Later: polygon clipping

Clipping Against Rectangle in 2D

- The result (in red)

Several practical algorithms for clipping

- Main motivation:

Avoid expensive line-rectangle intersections (which require floating point divisions)

- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Clipping Against Rectangle in 2D

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
- expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications and divisions

Cohen-Sutherland Clipping

- Clipping rectangle is an intersection of 4 halfplanes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

Cohen-Sutherland Subdivision

- Pick outside endpoint $(0 \neq 0000)$
- Pick a crossed edge $\left(o=b_{0} b_{1} b_{2} b_{3}\right.$ and $\left.b_{k} \neq 0\right)$
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
- Outcodes of second point are unchanged
- This algorithms converges

Cases for Outcodes

- Outcomes: accept, reject, subdivide

$\begin{aligned} & \text { bitwise AND } o_{1} \neq 0000, o_{2}=0000 \text { : subdivic } \\ & o_{1}\end{aligned} \& o_{2}=0000$: subdivide

Liang-Barsky Clipping

- Start with parametric form for a line
$p(\alpha)=(1-\alpha) p_{1}+\alpha p_{2}, \quad 0 \leq \alpha \leq 1$
$x(\alpha)=(1-\alpha) x_{1}+\alpha x_{2}$
$y(\boldsymbol{\alpha})=(1-\boldsymbol{\alpha}) y_{1}+\boldsymbol{\alpha} y_{2}$

Ordering of intersection points

- Order the intersection points
- Figure (a): $1>\alpha_{4}>\alpha_{3}>\alpha_{2}>\alpha_{1}>0$
- Figure (b): $1>\alpha_{4}>\alpha_{2}>\alpha_{3}>\alpha_{1}>0$

Liang-Barsky Idea

(a)

(b)

- It is possible to clip already if one knows the order of the four intersection points !
- Even if the actual intersections were not computed!
- Can enumerate all ordering cases

Line-Segment Clipping Assessment

- Cohen-Sutherland
- Works well if many lines can be rejected early
- Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
- Avoids recursive calls
- Many cases to consider (tedious, but not expensive)

Polygon Clipping

- Convert a polygon into one ore more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

Liang-Barsky efficiency improvements

- Efficiency improvement 1 :
- Compute intersections one by one
- Often can reject before all four are computed
- Efficiency improvement 2:
- Equations for α_{3}, α_{2}
$y_{\text {max }}=\left(1-\alpha_{3}\right) y_{1}+\alpha_{3} y_{2}$
$x_{\text {min }}=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} x_{2}$
$\alpha_{3}=\frac{y_{\text {max }}-y_{1}}{y_{2}-y_{1}} \quad \alpha_{2}=\frac{x_{\text {min }}-x_{1}}{x_{2}-x_{1}}$
- Compare α_{3}, α_{2} without floating-point division

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
- often difficult to manage

- Approach 2: tesselate and clip triangles - this is the common solution

Sutherland-Hodgeman (part 1)

- Subproblem:
- Input: polygon (vertex list) and single clip plane
- Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
- 4 in two dimensions
- 6 in three dimensions
- Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
- Test first vertex. Output if inside, otherwise skip.
- Then loop through list, testing transitions
- In-to-in: output vertex
- In-to-out: output intersection
- out-to-in: output intersection and vertex
- out-to-out: no output
- Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
- Do it analytically if possible
- Otherwise, approximate curves / surfaces by lines and polygons
- Bounding boxes
- Easy to calculate and maintain
- Sometimes big savings

(a)

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
$-b_{4}: z>z_{\text {max }}$
$-b_{5}: z<z_{\text {min }}$
- Other calculations as before

Liang-Barsky in 3D

- Add equation $z(\alpha)=(1-\alpha) z_{1}+\alpha z_{2}$
- Solve, for \mathbf{p}_{0} in plane and normal \mathbf{n} :

$$
\begin{gathered}
p(\boldsymbol{\alpha})=(1-\alpha) p_{1}+\alpha p_{2} \\
n \cdot\left(p(\alpha)-p_{0}\right)=0
\end{gathered}
$$

- Yields

$$
\alpha=\frac{n \cdot\left(p_{0}-p_{1}\right)}{n \cdot\left(p_{2}-p_{1}\right)}
$$

- Optimizations as for Liang-Barsky in 2D

Summary: Clipping

- Clipping line segments to rectangle or cube
- Avoid expensive multiplications and divisions
- Cohen-Sutherland or Liang-Barsky
- Polygon clipping
- Sutherland-Hodgeman pipeline
- Clipping in 3D
- essentially extensions of 2D algorithms

Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 2 due a week from today!
- Assignment 1 video

