
1

February 22, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s12/

CSCI 480 Computer Graphics
Lecture 12

Clipping

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
[Angel Ch. 7.1-7.7]

2

The Graphics Pipeline, Revisited

• Must eliminate objects that are outside
of viewing frustum

• Clipping: object space (eye coordinates)
• Scissoring: image space (pixels in frame buffer)

– most often less efficient than clipping
• We will first discuss 2D clipping (for simplicity)

– OpenGL uses 3D clipping

3

Clipping Against a Frustum

• General case of frustum (truncated pyramid)

• Clipping is tricky because of frustum shape

x

y

z

image plane

near far

clipped line

4

Perspective Normalization

• Solution:
– Implement perspective projection by perspective

normalization and orthographic projection
– Perspective normalization is a homogeneous transformation

x

y

z
near far

clipped line

1

1
1

0

x

y

z

image plane
near far

clipped line

See [Angel Ch. 5.9]

5

The Normalized Frustum

• OpenGL uses -1 ≤ x,y,z ≤ 1 (others possible)

• Clip against resulting cube

• Clipping against arbitrary (programmer-
specified) planes requires more general
algorithms and is more expensive

6

The Viewport Transformation

• Transformation sequence again:
1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords.
5. Orthographic projection (setting zp = 0)
6. Viewport transformation: to screen coordinates

• Viewport transformation can distort
– Solution: pass the correct window aspect ratio

to gluPerspective

7

Clipping

• General: 3D object
against cube

• Simpler case:
– In 2D: line against

square or rectangle
– Later: polygon clipping

x

y

z

clipped line

1

0 1

1

8

Clipping Against Rectangle in 2D

• Line-segment clipping: modify endpoints of
lines to lie within clipping rectangle

9

Clipping Against Rectangle in 2D

• The result (in red)

10

Clipping Against Rectangle in 2D

• Could calculate intersections of line segments with
clipping rectangle
– expensive, due to floating point multiplications

and divisions
• Want to minimize the number of multiplications

and divisions

y = k x + n

x = x0
x = x1

y = y1

y = y0

11

Several practical algorithms for clipping

• Cohen-Sutherland Clipping
• Liang-Barsky Clipping
• There are many more

(but many only work in 2D)

• Main motivation:

Avoid expensive line-rectangle intersections
(which require floating point divisions)

12

Cohen-Sutherland Clipping

• Clipping rectangle is an intersection of 4 half-
planes

• Encode results of four half-plane tests
• Generalizes to 3 dimensions (6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= ∩interior

xmin xmax
ymin

ymax

13

Outcodes (Cohen-Sutherland)

• Divide space into 9 regions
• 4-bit outcode determined by comparisons

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmaxxmin

bo: y > ymax
b1: y < ymin
b2: x > xmax
b3: x < xmin

o1 = outcode(x1,y1)
o2 = outcode(x2,y2)

(x1,y1)
(x2,y2)

14

Cases for Outcodes

• Outcomes: accept, reject, subdivide

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmaxxmin

o1 = o2 = 0000: accept entire
 segment

o1 & o2 ≠ 0000: reject entire
 segment

o1 = 0000, o2 ≠ 0000: subdivide

o1 ≠ 0000, o2 = 0000: subdivide

o1 & o2 = 0000: subdividebitwise AND

15

Cohen-Sutherland Subdivision

• Pick outside endpoint (o ≠ 0000)
• Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)
• Compute intersection of this line and this edge
• Replace endpoint with intersection point
• Restart with new line segment

– Outcodes of second point are unchanged
• This algorithms converges

16

Liang-Barsky Clipping

• Start with parametric form for a line

p1

p2

17

Liang-Barsky Clipping

• Compute all four intersections 1,2,3,4 with
extended clipping rectangle

• Often, no need to compute all four intersections

p1

p2

1

43

2

extended clipping rectangle

18

Ordering of intersection points

• Order the intersection points
• Figure (a): 1 > α4 > α3 > α2 > α1 > 0
• Figure (b): 1 > α4 > α2 > α3 > α1 > 0

19

Liang-Barsky Idea

• It is possible to clip already if one knows
the order of the four intersection points !

• Even if the actual intersections were not computed !
• Can enumerate all ordering cases

20

Liang-Barsky efficiency improvements

• Efficiency improvement 1:
– Compute intersections one by one
– Often can reject before all four are computed

• Efficiency improvement 2:
– Equations for α3, α2

– Compare α3, α2 without floating-point division

21

Line-Segment Clipping Assessment

• Cohen-Sutherland
– Works well if many lines can be rejected early
– Recursive structure (multiple subdivisions) is

a drawback
• Liang-Barsky

– Avoids recursive calls
– Many cases to consider (tedious, but not expensive)

22

Outline

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions

23

Polygon Clipping

• Convert a polygon into one ore more polygons
• Their union is intersection with clip window
• Alternatively, we can first tesselate concave

polygons (OpenGL supported)

24

Concave Polygons
• Approach 1: clip, and then join pieces to a

single polygon
– often difficult to manage

• Approach 2: tesselate and clip triangles
– this is the common solution

tesselation

25

Sutherland-Hodgeman (part 1)

• Subproblem:
– Input: polygon (vertex list) and single clip plane
– Output: new (clipped) polygon (vertex list)

• Apply once for each clip plane
– 4 in two dimensions
– 6 in three dimensions
– Can arrange in pipeline

26

Sutherland-Hodgeman (part 2)

• To clip vertex list (polygon) against a half-plane:
– Test first vertex. Output if inside, otherwise skip.
– Then loop through list, testing transitions

• In-to-in: output vertex
• In-to-out: output intersection
• out-to-in: output intersection and vertex
• out-to-out: no output

– Will output clipped polygon as vertex list
• May need some cleanup in concave case
• Can combine with Liang-Barsky idea

27

Other Cases and Optimizations

• Curves and surfaces
– Do it analytically if possible
– Otherwise, approximate curves / surfaces by

lines and polygons
• Bounding boxes

– Easy to calculate and maintain
– Sometimes big savings

28

Outline

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions

29

Clipping Against Cube

• Derived from earlier algorithms
• Can allow right parallelepiped

30

Cohen-Sutherland in 3D

• Use 6 bits in outcode
– b4: z > zmax

– b5: z < zmin

• Other calculations
 as before

31

Liang-Barsky in 3D

• Add equation z(α) = (1- α) z1 + α z2

• Solve, for p0 in plane and normal n:

• Yields

• Optimizations as for Liang-Barsky in 2D

32

Summary: Clipping

• Clipping line segments to rectangle or cube
– Avoid expensive multiplications and divisions
– Cohen-Sutherland or Liang-Barsky

• Polygon clipping
– Sutherland-Hodgeman pipeline

• Clipping in 3D
– essentially extensions of 2D algorithms

33

Preview and Announcements

• Scan conversion
• Anti-aliasing
• Other pixel-level operations
• Assignment 2 due a week from today!
• Assignment 1 video

