CSCI 480 Computer Graphics Lecture 13

Rasterization

Scan Conversion Antialiasing [Ch 7.8-7.11, 8.9-8.12]

February 27, 2012 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Rasterization (scan conversion)

- · Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- · Writing pixels into frame buffer
- · Separate buffers:
- depth (z-buffer),
- display (frame buffer),
- shadows (stencil buffer),
- blending (accumulation buffer)

2

Rasterizing a line

3

Digital Differential Analyzer (DDA)

· Represent line as

$$y = mx + h$$
 wher

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

• Then, if $\Delta x = 1$ pixel, we have $\Delta y = m \Delta x = m$

.

Digital Differential Analyzer

• Assume write_pixel(int x, int y, int value)

- Problems:
 - Requires floating point addition
 - Missing pixels with steep slopes: slope restriction needed

5

Digital Differential Analyzer (DDA)

- Assume 0 ≤ m ≤ 1
- Exploit symmetry
- Distinguish special cases

But still requires floating point additions!

Bresenham's Algorithm I

- · Eliminate floating point addition from DDA
- Assume again 0 ≤ m ≤ 1
- · Assume pixel centers halfway between integers

Bresenham's Algorithm II

- Decision variable a b
 - If a b > 0 choose lower pixel
 - If a b ≤ 0 choose higher pixel
- Goal: avoid explicit computation of a b
- Step 1: re-scale $d = (x_2 x_1)(a b) = \Delta x(a b)$
- · d is always integer

8

Bresenham's Algorithm III

- Compute d at step k +1 from d at step k!
- Case: j did not change (d_k > 0)
 - a decreases by m, b increases by m
 - -(a b) decreases by $2m = 2(\Delta y/\Delta x)$
 - $\Delta x(a-b)$ decreases by $2\Delta y$

Bresenham's Algorithm IV

- Case: j did change (d_k ≤ 0)
 - a decreases by m-1, b increases by m-1
 - -(a-b) decreases by $2m-2=2(\Delta y/\Delta x-1)$
 - $\Delta x(a-b)$ decreases by $2(\Delta y \Delta x)$

10

Bresenham's Algorithm V

- So $d_{k+1} = d_k 2\Delta y$ if $d_k > 0$
- And $d_{k+1} = d_k 2(\Delta y \Delta x)$ if $d_k \le 0$
- · Final (efficient) implementation:

```
void draw_line(int x1, int y1, int x2, int y2) {
  int x, y = y0;
  int dx = 2*(x2-x1), dy = 2*(y2-y1);
  int dydx = dy-dx, D = (dy-dx)/2;

for (x = x1; x <= x2; x++) {
    write_pixel(x, y, color);
    if (D > 0) D -= dy;
    else {y++; D -= dydx;}
  }
}
```

11

Bresenham's Algorithm VI

- Need different cases to handle m > 1
- · Highly efficient
- · Easy to implement in hardware and software
- · Widely used

Outline

- · Scan Conversion for Lines
- · Scan Conversion for Polygons
- Antialiasing

13

Scan Conversion of Polygons

- · Multiple tasks:
 - Filling polygon (inside/outside)
 - Pixel shading (color interpolation)
 - Blending (accumulation, not just writing)
 - Depth values (z-buffer hidden-surface removal)
 - Texture coordinate interpolation (texture mapping)
- · Hardware efficiency is critical
- Many algorithms for filling (inside/outside)
- · Much fewer that handle all tasks well

14

Filling Convex Polygons

- · Find top and bottom vertices
- · List edges along left and right sides
- · For each scan line from bottom to top
 - Find left and right endpoints of span, xl and xr
 - Fill pixels between xl and xr
 - Can use Bresenham's algorithm to update xl and xr

15

Concave Polygons: Odd-Even Test

- · Approach 1: odd-even test
- · For each scan line
 - Find all scan line/polygon intersections
 - Sort them left to right
 - Fill the interior spans between intersections
- Parity rule: inside after an odd number of crossings

16

Edge vs Scan Line Intersections

- · Brute force: calculate intersections explicitly
- Incremental method (Bresenham's algorithm)
- · Caching intersection information
 - Edge table with edges sorted by $y_{\rm min}$
 - Active edges, sorted by x-intersection, left to right
- Process image from smallest y_{min} up

Concave Polygons: Tessellation

- Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
- · OpenGL specification
 - Need accept only simple, flat, convex polygons
 - Tessellate explicitly with tessellator objects
 - Implicitly if you are lucky
- · Most modern GPUs scan-convert only triangles

Flood Fill

- · Draw outline of polygon
- · Pick color seed
- · Color surrounding pixels and recurse
- · Must be able to test boundary and duplication
- · More appropriate for drawing than rendering

19

Outline

- · Scan Conversion for Lines
- · Scan Conversion for Polygons
- · Antialiasing

20

Aliasing

- · Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

Moire pattern from sandlotscience.com

21

More Aliasing

...

Antialiasing for Line Segments

· Use area averaging at boundary

- (c) is aliased, magnified
- (d) is antialiased, magnified

23

Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- · Average results using a filter
- · Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities

Supersampling Example

- · Other improvements
 - Stochastic sampling: avoid sample position repetitions
 - Stratified sampling (jittering) : perturb a regular grid of samples

25

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- · Example: spokes of wagon wheel in movies
- Solution: supersample in time and average
 - Fast-moving objects are blurred
 - Happens automatically with real hardware (photo and video cameras)
 - Exposure time is important (shutter speed)
 - Effect is called motion blur

Motion blur

26

Wagon Wheel Effect

Source: YouTube

27

Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984 16 samples / pixel / timestep

28

Summary

- Scan Conversion for Polygons
 - Basic scan line algorithm
 - Convex vs concave
 - Odd-even rules, tessellation
- · Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling