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Local lllumination

+ Object illuminations are independent

» No light scattering between objects

* No real shadows, reflection, transmission
* OpenGL pipeline uses this
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Global lllumination

» Ray tracing (highlights, reflection, transmission)
» Radiosity (surface interreflections)

» Photon mapping

* Precomputed Radiance Transfer (PRT)
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Object Space:

+ Graphics pipeline: for each object, render
— Efficient pipeline architecture, real-time
— Difficulty: object interactions (shadows, reflections, etc.)

Image Space:

* Ray tracing: for each pixel, determine color
— Pixel-level parallelism
— Difficulty: very intensive computation, usually off-line

First idea: Forward Ray Tracing

» Shoot (many) light rays from each light source
* Rays bounce off the objects

Simulates paths of photons

* Problem: many rays will

miss camera and not

contribute to image!

This algorithm is not

practical
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Backward Ray Tracing

* Shoot one ray from camera
through each pixel in image plane
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Generating Rays

+ Camera is at (0,0,0) and points
in the negative z-direction

* Must determine coordinates of
image corners in 3D
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Generating Rays
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Determining Pixel Color

Phong model (local as before)
Shadow rays

. Specular reflection

. Specular transmission
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Steps (3) and (4) require
recursion.

frontal view z=-1 ©
Shadow Rays
camera
+ Determine if light “really” light source
hits surface point AN ‘ e !
* Cast shadgw ray from. 7O< \/'\image
surface point to each light | ! plane
« If shadow ray hits scene ray /
opaque object, no object 2\ _¢
contribution from S
that light shadow ray
+ This is essentially (blocked) scene
improved diffuse object 1

reflection
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phong MOde| camera
« If shadow ray light source
can reach N | z /
to the light, fgi i
apply a standard / \ \/\I‘;Taangee
Phong model shadow ray\“‘ ray/
(unblocked) * !
] v
1:L(k,,(1-n)+ks(r.v)a) n
scene
object

Where is Phong model applied
in this example?
Which shadow rays are blocked?

Reflection Rays

» For specular component of illumination
» Compute reflection ray (recall: backward!)
+ Call ray tracer recursively to determine color

Angle of Reflection

» Recall: incoming angle = outgoing angle

cr=2(*n)n-1

« Compute only for surfaces
that are reflective

Reflections Example

www.yafaray.org

Transmission Rays

Calculate light transmitted through surfaces
+ Example: water, glass

+ Compute transmission ray

+ Call ray tracer recursively to determine color
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Transmitted Light

* Index of refraction is speed of light,
relative to speed of light in vacuum
— Vacuum: 1.0 (per definition)
— Air: 1.000277 (approximate to 1.0)
— Water: 1.33
— Glass: 1.49

« Compute t using Snell’s law
— m, = index for upper material
— m = index for lower material

sin(u;) ™
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Translucency

* Most real objects are not transparent,
but blur the background image

+ Scatter light on other side of surface

» Use stochastic sampling ! r
(called distributed ray tracing)
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Transmission + Translucency Example

WWW.povray.org
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The Ray Casting Algorithm

« Simplest case of ray tracing
1. For each pixel (x,y), fire a ray from COP through (x,y)
2. For each ray & object, calculate closest intersection
3. For closest intersection point p

— Calculate surface normal

— For each light source, fire shadow ray

— For each unblocked shadow ray, evaluate local Phong model for
that light, and add the result to pixel color

« Critical operations
— Ray-surface intersections
— lllumination calculation
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Recursive Ray Tracing

» Also calculate specular component
— Reflect ray from eye on specular surface
— Transmit ray from eye through transparent surface

+ Determine color of incoming ray by recursion

» Trace to fixed depth

+ Cut off if contribution
below threshold

oy
Q"
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Ray Tracing Assessment

+ Global illumination method
* Image-based
* Pluses
— Relatively accurate shadows, reflections, refractions
* Minuses
— Slow (per pixel parallelism, not pipeline parallelism)
— Aliasing
— Inter-object diffuse reflections require many bounces
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Raytracing Example |

www.yafaray.org
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Raytracing Example Il

WWW.povray.org
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Raytracing Example Il

www.yafaray.org
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Raytracing Example IV

WWW.povray.org
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Summary

* Ray Casting

+ Shadow Rays and Local Phong Model
» Reflection

* Transmission

* Next lecture: Geometric queries
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