CSCI 480 Computer Graphics
Lecture 15

Ray Tracing

Ray Casting

Shadow Rays

Reflection and Transmission
[Ch. 13.2-13.3]

March 19, 2012
Jernej Barbic
University of Southern California

http://www-bcf. usc.edu/~j ic/cs480-s12/

Local lllumination

+ Object illuminations are independent

» No light scattering between objects

* No real shadows, reflection, transmission
* OpenGL pipeline uses this

—~000
—~000

Global lllumination

» Ray tracing (highlights, reflection, transmission)
» Radiosity (surface interreflections)

» Photon mapping

* Precomputed Radiance Transfer (PRT)

—0 00
—0 00

Object Space:

+ Graphics pipeline: for each object, render
— Efficient pipeline architecture, real-time
— Difficulty: object interactions (shadows, reflections, etc.)

Image Space:

* Ray tracing: for each pixel, determine color
— Pixel-level parallelism
— Difficulty: very intensive computation, usually off-line

First idea: Forward Ray Tracing

» Shoot (many) light rays from each light source
* Rays bounce off the objects

Simulates paths of photons

* Problem: many rays will

miss camera and not

contribute to image!

This algorithm is not

practical

Y

Backward Ray Tracing

* Shoot one ray from camera
through each pixel in image plane

8 Light Source

Shadow Ray

Image

Camera

View Ray

Scene Object

Generating Rays

+ Camera is at (0,0,0) and points
in the negative z-direction

* Must determine coordinates of
image corners in 3D

Image
Camera

G

View Ray

y
Lé"

Generating Rays

aspect ratio=w/h

ray y
7 X
w

image
view angle plane °
center of (fov) h
projection
(COP)
side view frontal view

Generating Rays

y
;QL x
field of

view angle
(fov)

image
plane

CcoP

side view

side view

y = tan(fov/2)
z=-1

image
plane

y = -tan(fov/2)
z=-1

9

Generating Rays

y
hos

a=aspectrato=w/h

x = -a tan(fov/2) w x = a tan(fov/2)
y = tan(fov/2) y = tan(fov/2)
z=-1 z=-1

h

x = -a tan(fov/2)
y = -tan(fov/2)
z=-1

x = a tan(fov/2)
y = -tan(fov/2)

Determining Pixel Color

Phong model (local as before)
Shadow rays

. Specular reflection

. Specular transmission

S O

Steps (3) and (4) require
recursion.

frontal view z=-1 ©
Shadow Rays
camera
+ Determine if light “really” light source
hits surface point AN ‘ e !
* Cast shadgw ray from. 7O< \/'\image
surface point to each light | ! plane
« If shadow ray hits scene ray /
opaque object, no object 2\ _¢
contribution from S
that light shadow ray
+ This is essentially (blocked) scene
improved diffuse object 1

reflection

12

phong MOde| camera
« If shadow ray light source
can reach N | z /
to the light, fgi i
apply a standard / \ \/\I‘;Taangee
Phong model shadow ray\“‘ ray/
(unblocked) * !
] v
1:L(k,,(1-n)+ks(r.v)a) n
scene
object

Where is Phong model applied
in this example?
Which shadow rays are blocked?

Reflection Rays

» For specular component of illumination
» Compute reflection ray (recall: backward!)
+ Call ray tracer recursively to determine color

Angle of Reflection

» Recall: incoming angle = outgoing angle

cr=2(*n)n-1

« Compute only for surfaces
that are reflective

Reflections Example

www.yafaray.org

Transmission Rays

Calculate light transmitted through surfaces
+ Example: water, glass

+ Compute transmission ray

+ Call ray tracer recursively to determine color

¥

Transmitted Light

* Index of refraction is speed of light,
relative to speed of light in vacuum
— Vacuum: 1.0 (per definition)
— Air: 1.000277 (approximate to 1.0)
— Water: 1.33
— Glass: 1.49

« Compute t using Snell’s law
— m, = index for upper material
— m = index for lower material

sin(u;) ™

! = — =
sin(u;) My n

Translucency

* Most real objects are not transparent,
but blur the background image

+ Scatter light on other side of surface

» Use stochastic sampling ! r
(called distributed ray tracing)

20

Transmission + Translucency Example

WWW.povray.org
21

The Ray Casting Algorithm

« Simplest case of ray tracing
1. For each pixel (x,y), fire a ray from COP through (x,y)
2. For each ray & object, calculate closest intersection
3. For closest intersection point p

— Calculate surface normal

— For each light source, fire shadow ray

— For each unblocked shadow ray, evaluate local Phong model for
that light, and add the result to pixel color

« Critical operations
— Ray-surface intersections
— lllumination calculation

22

Recursive Ray Tracing

» Also calculate specular component
— Reflect ray from eye on specular surface
— Transmit ray from eye through transparent surface

+ Determine color of incoming ray by recursion

» Trace to fixed depth

+ Cut off if contribution
below threshold

oy
Q"

23

Ray Tracing Assessment

+ Global illumination method
* Image-based
* Pluses
— Relatively accurate shadows, reflections, refractions
* Minuses
— Slow (per pixel parallelism, not pipeline parallelism)
— Aliasing
— Inter-object diffuse reflections require many bounces

24

Raytracing Example |

www.yafaray.org

25

Raytracing Example Il

WWW.povray.org

26

Raytracing Example Il

www.yafaray.org

27

Raytracing Example IV

WWW.povray.org
28

Summary

* Ray Casting

+ Shadow Rays and Local Phong Model
» Reflection

* Transmission

* Next lecture: Geometric queries

29

