CSCI 480 Computer Graphics

Lecture 15

Ray Tracing

> Ray Casting
> Shadow Rays
> Reflection and Transmission
> [Ch. 13.2-13.3]

March 19, 2012
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~ibarbic/cs480-s12/

Local Illumination

- Object illuminations are independent
- No light scattering between objects
- No real shadows, reflection, transmission
- OpenGL pipeline uses this

Global Illumination

- Ray tracing (highlights, reflection, transmission)
- Radiosity (surface interreflections)
- Photon mapping
- Precomputed Radiance Transfer (PRT)

Object Space:

- Graphics pipeline: for each object, render
- Efficient pipeline architecture, real-time
- Difficulty: object interactions (shadows, reflections, etc.)

Image Space:

- Ray tracing: for each pixel, determine color
- Pixel-level parallelism
- Difficulty: very intensive computation, usually off-line

First idea: Forward Ray Tracing

- Shoot (many) light rays from each light source
- Rays bounce off the objects
- Simulates paths of photons
- Problem: many rays will miss camera and not contribute to image!
- This algorithm is not practical

Backward Ray Tracing

- Shoot one ray from camera through each pixel in image plane

Generating Rays

- Camera is at $(0,0,0)$ and points in the negative z-direction
- Must determine coordinates of image corners in 3D

Generating Rays

aspect ratio $=w / h$

Generating Rays

Generating Rays

$$
a=\text { aspect ratio }=w / h
$$

$x=-a \tan (f o v / 2)$
$y=\tan (f o v / 2)$
$z=-1$
$x=-a \tan (f \circ v / 2)$
$y=-\tan (f o v / 2)$
$z=-1$

frontal view
$x=a \tan (f o v / 2)$
$y=\tan (f o v / 2)$
$z=-1$
$x=a \tan (f o v / 2)$
$y=-\tan (f o v / 2)$
$z=-1$

Determining Pixel Color

1. Phong model (local as before)
2. Shadow rays
3. Specular reflection
4. Specular transmission

Steps (3) and (4) require recursion.

Shadow Rays

- Determine if light "really" hits surface point
- Cast shadow ray from surface point to each light
- If shadow ray hits opaque object, no contribution from that light
- This is essentially improved diffuse reflection

Phong Model

- If shadow ray can reach to the light, apply a standard Phong model
light source

camera

$$
I=L\left(k_{d}(l \cdot n)+k_{S}(r \cdot v)^{\alpha}\right)
$$

Where is Phong model applied in this example?
Which shadow rays are blocked?

Reflection Rays

- For specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color

Angle of Reflection

- Recall: incoming angle = outgoing angle
- $\mathbf{r}=2(\mathbf{I} \cdot \mathbf{n}) \mathbf{n}-\mathbf{I}$
- Compute only for surfaces that are reflective

Reflections Example

www.yafaray.org

Transmission Rays

- Calculate light transmitted through surfaces
- Example: water, glass
- Compute transmission ray
- Call ray tracer recursively to determine color

Transmitted Light

- Index of refraction is speed of light, relative to speed of light in vacuum
- Vacuum: 1.0 (per definition)
- Air: 1.000277 (approximate to 1.0)
- Water: 1.33
- Glass: 1.49
- Compute t using Snell's law
- $\eta_{I}=$ index for upper material
- $\eta_{t}=$ index for lower material
$\frac{\sin \left(u_{l}\right)}{\sin \left(u_{t}\right)}=\frac{\eta_{t}}{\eta_{l}}=\eta$

Translucency

- Most real objects are not transparent, but blur the background image
- Scatter light on other side of surface
- Use stochastic sampling (called distributed ray tracing)

Transmission + Translucency Example

wWW.povray.org

The Ray Casting Algorithm

- Simplest case of ray tracing

1. For each pixel (x, y), fire a ray from COP through (x, y)
2. For each ray \& object, calculate closest intersection
3. For closest intersection point \mathbf{p}

- Calculate surface normal
- For each light source, fire shadow ray
- For each unblocked shadow ray, evaluate local Phong model for that light, and add the result to pixel color
- Critical operations
- Ray-surface intersections
- Illumination calculation

Recursive Ray Tracing

- Also calculate specular component
- Reflect ray from eye on specular surface
- Transmit ray from eye through transparent surface
- Determine color of incoming ray by recursion
- Trace to fixed depth
- Cut off if contribution below threshold

Ray Tracing Assessment

- Global illumination method
- Image-based
- Pluses
- Relatively accurate shadows, reflections, refractions
- Minuses
- Slow (per pixel parallelism, not pipeline parallelism)
- Aliasing
- Inter-object diffuse reflections require many bounces

Raytracing Example I

www.yafaray.org

Raytracing Example II

www.povray.org

Raytracing Example III

www.yafaray.org

Raytracing Example IV

Summary

- Ray Casting
- Shadow Rays and Local Phong Model
- Reflection
- Transmission
- Next lecture: Geometric queries

