CSCI 480 Computer Graphics Lecture 16

Geometric Queries for Ray Tracing

Ray-Surface Intersection
Barycentric Coordinates

[Ch. 13.2 - 13.3]

March 21, 2012 Jernej Barbic University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Ray-Surface Intersections

- Necessary in ray tracing
- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics

Intersection of Rays and Parametric Surfaces

- Ray in parametric form
 - Origin $\mathbf{p}_0 = [\mathbf{x}_0 \ \mathbf{y}_0 \ \mathbf{z}_0]^T$
 - Direction $\mathbf{d} = [\mathbf{x}_d \ \mathbf{y}_d \ \mathbf{z}_d]^T$
 - Assume **d** is normalized $(x_d^2 + y_d^2 + z_d^2 = 1)$
 - Ray $p(t) = p_0 + dt$ for t > 0
- Surface in parametric form
 - Point $\mathbf{q} = g(\mathbf{u}, \mathbf{v})$, possible bounds on \mathbf{u} , \mathbf{v}
 - Solve $\mathbf{p} + \mathbf{d} t = g(\mathbf{u}, \mathbf{v})$
 - Three equations in three unknowns (t, u, v)

Intersection of Rays and Implicit Surfaces

- Ray in parametric form
 - Origin $\mathbf{p}_0 = [\mathbf{x}_0 \ \mathbf{y}_0 \ \mathbf{z}_0]^\mathsf{T}$
 - Direction $\mathbf{d} = [\mathbf{x}_d \ \mathbf{y}_d \ \mathbf{z}_d]^T$
 - Assume d normalized $(x_d^2 + y_d^2 + z_d^2 = 1)$
 - Ray $p(t) = p_0 + dt$ for t > 0
- Implicit surface
 - Given by $f(\mathbf{q}) = 0$
 - Consists of all points \mathbf{q} such that $f(\mathbf{q}) = 0$
 - Substitute ray equation for \mathbf{q} : $f(\mathbf{p}_0 + \mathbf{d} t) = 0$
 - Solve for t (univariate root finding)
 - Closed form (if possible),
 otherwise numerical approximation

Ray-Sphere Intersection I

- Common and easy case
- Define sphere by
 - Center $\mathbf{c} = [\mathbf{x}_c \ \mathbf{y}_c \ \mathbf{z}_c]^T$
 - Radius r

- Surface
$$f(\mathbf{q}) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0$$

Plug in ray equations for x, y, z:

$$x = x_0 + x_d t$$
, $y = y_0 + y_d t$, $z = z_0 + z_d t$

And we obtain a scalar equation for t:

$$(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2$$

Ray-Sphere Intersection II

Simplify to

$$at^2 + bt + c = 0$$

where

$$a = x_d^2 + y_d^2 + z_d^2 = 1 \quad \text{since } |d| = 1$$

$$b = 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c))$$

$$c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2$$

Solve to obtain t₀ and t₁

$$t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c^2}}{2}$$

Check if t_0 , $t_1 > 0$ (ray) Return min(t_0 , t_1)

Ray-Sphere Intersection III

For lighting, calculate unit normal

$$n = \frac{1}{r}[(x_i - x_c) \quad (y_i - y_c) \quad (z_i - z_c)]^T$$

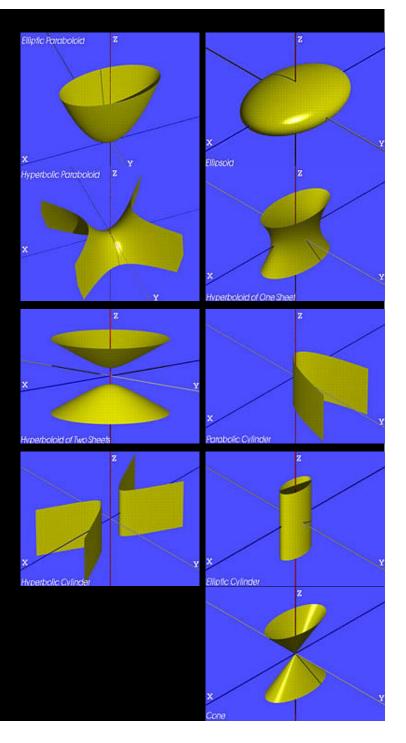
- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
 - Calculate b² 4c, abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations

Ray-Quadric Intersection

- Quadric f(p) = f(x, y, z) = 0,
 where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG



Ray-Polygon Intersection I

- Assume planar polygon in 3D
 - 1. Intersect ray with plane containing polygon
 - 2. Check if intersection point is inside polygon
- Plane
 - Implicit form: ax + by + cz + d = 0
 - Unit normal: $\mathbf{n} = [a \ b \ c]^T$ with $a^2 + b^2 + c^2 = 1$
- Substitute:

$$a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0$$

Solve:

$$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}$$

Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane
- Rewrite using dot product

$$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(n \cdot p_0 + d)}{n \cdot d}$$

- If n d = 0, no intersection (ray parallel to plane)
- If t ≤ 0, the intersection is behind ray origin

Test if point inside polygon

Use even-odd rule or winding rule

 Easier if polygon is in 2D (project from 3D to 2D)

Easier for triangles (tessellate polygons)

Point-in-triangle testing

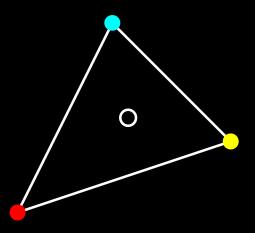
- Critical for polygonal models
- Project the triangle, and point of plane intersection, onto one of the planes x = 0, y = 0, or z = 0 (pick a plane not perpendicular to triangle) (such a choice always exists)
- Then, do the 2D test in the plane, by computing barycentric coordinates (follows next)

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates

Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion



Barycentric Coordinates in 1D

Linear interpolation

$$- \mathbf{p}(t) = (1 - t)\mathbf{p}_1 + t \mathbf{p}_2, 0 \le t \le 1$$

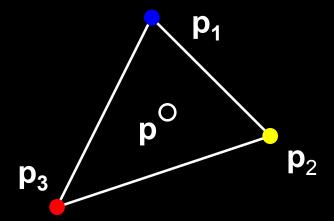
- $-\mathbf{p}(t) = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2$ where $\alpha + \beta = 1$
- **p** is between **p**₁ and **p**₂ iff $0 \le α$, $β \le 1$
- Geometric intuition
 - Weigh each vertex by ratio of distances from ends

$$\mathbf{p}_1$$
 \mathbf{p} \mathbf{p}_2

• α , β are called barycentric coordinates

Barycentric Coordinates in 2D

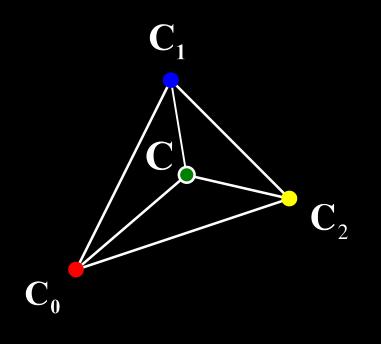
Now, we have 3 points instead of 2



- Define 3 barycentric coordinates, α, β, γ
- $\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3$
- **p** inside triangle iff $0 \le \alpha$, β , $\gamma \le 1$, $\alpha + \beta + \gamma = 1$
- How do we calculate α, β, γ given p?

Barycentric Coordinates for Triangle

Coordinates are ratios of triangle areas



$$\alpha = \frac{Area(\mathbf{CC_{1}C_{2}})}{Area(\mathbf{C_{0}C_{1}C_{2}})}$$

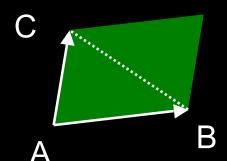
$$\beta = \frac{Area(\mathbf{C_{0}CC_{2}})}{Area(\mathbf{C_{0}C_{1}C_{2}})}$$

$$\gamma = \frac{Area(\mathbf{C_{0}C_{1}C_{2}})}{Area(\mathbf{C_{0}C_{1}C_{2}})} = 1 - \alpha - \beta$$

 Areas in these formulas should be signed, depending on clockwise (-) or anti-clockwise orientation (+) of the triangle! Very important for point-in-triangle test.

Computing Triangle Area in 3D

- Use cross product
- Parallelogram formula



- Area(ABC) = $(1/2) |(B A) \times (C A)|$
- How to get correct sign for barycentric coordinates?
 - tricky, but possible:
 compare directions of vectors (B A) x (C A), for triangles CC₁C₂ vs C₀C₁C₂, etc.
 (either 0 (sign+) or 180 deg (sign-) angle)
 - easier alternative: project to 2D, use 2D formula
 - projection to 2D preserves barycentric coordinates

Computing Triangle Area in 2D

- Suppose we project the triangle to xy plane
- Area(xy-projection(ABC)) =

$$(1/2) ((b_x - a_x)(c_y - a_y) - (c_x - a_x) (b_y - a_y))$$

 This formula gives correct sign (important for barycentric coordinates)

Summary

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates

Class video, Programming Assignment 2