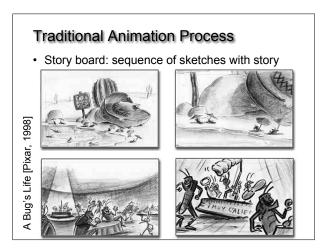


Computer Animation

- · Animation defined by path through state space
- To produce animation:
 - 1. start at beginning of state space path
 - 2. set the parameters of your model
 - 3. render the image
 - 4. move to next point along state space path, 5. Goto 2.
- Path usually defined by a set of motion curves (one for each parameter)
- Animation = specifying state space trajectory

4

Basic Animation Techniques

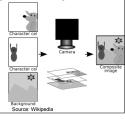

- Traditional (frame by frame)
- · Keyframing
- Procedural techniques
- Behavioral techniques (e.g., flocking)
- Performance-based (motion capture)
- Physically-based (dynamics)

Traditional Animation

- · Film runs at 24 frames per second (fps)
 - That's 1440 pictures to draw per minute
 - 1800 fpm for video (30fps)
- Productions issues:
 - Need to stay organized for efficiency and cost reasons
 - Need to render the frames systematically
- Artistic issues:

7

- How to create the desired look and mood while conveying story?
- Artistic vision has to be converted into a sequence of still frames
- Not enough to get the stills right--must look right at full speed
 - Hard to "see" the motion given the stills
 - Hard to "see" the motion at the wrong frame rate

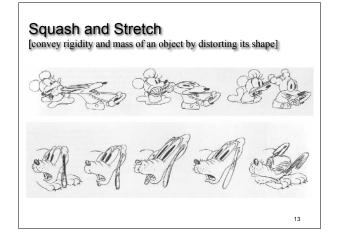

Traditional Animation Process

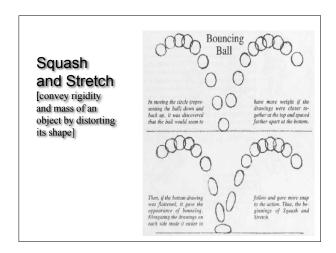
- Key frames
 - Important frames
 - Motion-based description
 - Example: beginning of stride, end of stride
- Inbetweens: draw remaining frames

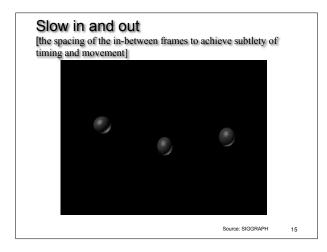
 Traditionally done by (low-paid) human animators

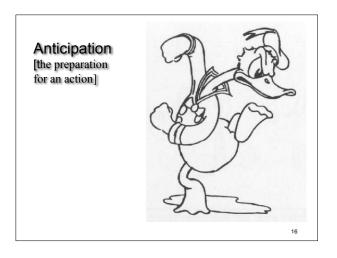
Layered Motion

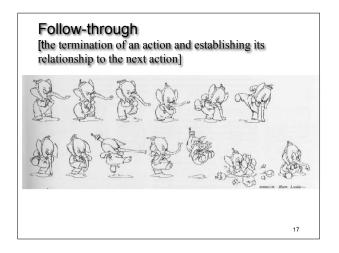
- · It's often useful to have multiple layers of animation
 - How to make an object move in front of a background?
 - Use one layer for background, one for object
 - Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering
- Transparent acetate allows multiple layers
 - Draw each separately
 - Stack them on a copy stand
 Transfer onto film by taking a photograph of the stack

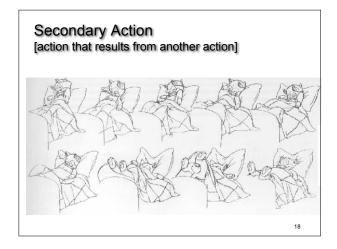



Principles of Traditional Animation [Lasseter, SIGGRAPH 1987]


- Stylistic conventions followed by Disney's animators and others (but this is not the only interesting style, of course)
- From experience built up over many years
 - Squash and stretch -- use distortions to convey flexibility
 Timing -- speed conveys mass, personality
 - Anticipation -- prepare the audience for an action
 - Followthrough and overlapping action -- continuity with next action
 - Slow in and out -- speed of transitions conveys subtleties
 - Arcs -- motion is usually curved
 - Exaggeration -- emphasize emotional content
 - Secondary Action -- motion occurring as a consequence
 Appeal -- audience must enjoy watching it




8



Computer-Assisted Animations

- · Computerized Cel painting
 - Digitize the line drawing, color it using seed fill
 - Eliminates cel painters
 - Widely used in production (little hand painting any more)
 - e.g. Lion King
- Cartoon Inbetweening
 - Automatically interpolate between two drawings to produce inbetweens (similar to morphing)
 - Hard to get right
 - inbetweens often don't look natural
 - what are the parameters to interpolate? Not clear...
 - not used very often

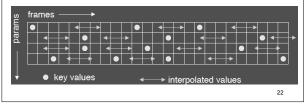
True Computer Animations

- · Generate images by rendering a 3D model
- Vary parameters to produce animation
- Brute force
 - Manually set the parameters for every frame
 - 1440n values per minute for n parameters
 - Maintenance problem
- Computer keyframing
 - Lead animators create important frames
 - Computers draw inbetweens from 3D(!)

20

- Dominant production method

Interpolation


- Hard to interpolate hand-drawn keyframes
 Computers don't help much
- The situation is different in 3D computer animation:
 Each keyframe is a defined by a bunch of
 - parameters (state)
 - Sequence of keyframes = points in high-dimensional state space
- · Computer inbetweening interpolates these points
- How? You guessed it: splines

21

19

Keyframing Basics

- · Despite the name, there aren't really keyframes, per se
- For each variable, specify its value at the "important" frames. Not all variables need agree about which frames are important
- · Hence, key values rather than key frames
- Create path for each parameter by interpolating key values

Keyframing: Issues

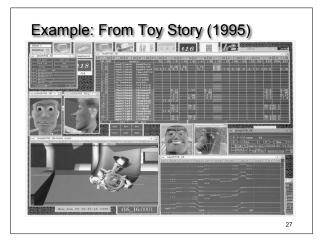
- · What should the key values be?
- When should the key values occur?
- · How can the key values be specified?
- · How are the key values interpolated?
- What kinds of BAD THINGS can occur from interpolation?
 - Invalid configurations (pass through objects)
 - Unnatural motions (painful twists/bends)
 - Jerky motion

23

Keyframing: Production Issues

- How to learn the craft
 - apprentice to an animator
 - practice, practice, practice
- Pixar starts with animators, teaches them computers and starts with computer folks and teaches them some art

Interpolation


- · Splines: non-uniform, C1 is pretty good
- · Velocity control is needed at the keyframes
- · Classic example: a ball bouncing under gravity
 - zero vertical velocity at start
 - high downward velocity just before impact
 - lower upward velocity after
- motion produced by fitting a smooth spline looks unnatural
- What kind of spline might we want to use?

Hermite is good

Problems with Interpolation

- · Splines don't always do the right thing
- · Classic problems
 - Important constraints may break between keyframes
 - feet sink through the floor
 - hands pass through walls
 - 3D rotations
 - · Euler angles don't always interpolate in a natural way
- · Classic solutions:
 - More keyframes!
 - Quaternions help fix rotation problems

Scene from Toy Story 2

28

26

Some Research Issues

- Inverse kinematics
 - How to plot a path through state space
 - Multiple degrees of freedom
 - Also important in robotics

Summary

- Traditional Animation
- · Keyframe Animation
- Computer Animation