CSCI 480 Computer Graphics Lecture 23

Non-Photorealistic Rendering

Pen-and-ink Illustrations

Painterly Rendering

Cartoon Shading

Technical Illustrations

April 16, 2012
Jernej Barbic
University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization[Lecture next week]

cartoon shading

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998

David Gainey

Non-photorealistic Rendering

Also called:

- Expressive graphics
- Artistic rendering
- Non-realistic graphics

Source: ATI

- Art-based rendering
- Psychographics

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Hue

Perception of "distinct" colors by humans

RedGreen

BlueYellow

0 60 120 180 240 300 360 Hue Scale

Tone

 Perception of "brightness" of a color by humans

Also called lightness

Important in NPR

darker 5

Source: Wikipedia

lighter

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Pen-and-Ink Illustrations

Strokes

Curved lines of varying thickness and density

Texture

Conveyed by collection of strokes

Tone

 Perceived gray level across image or segment

Outline

Boundary lines that disambiguate structure

Winkenbach and Salesin 1994

Rendering Pipeline: Polygonal Surfaces with NPR

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?

Stroke Texture Examples

Winkenbach and Salesin 1994

Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Indication Example

Input without detail

With indication

Without indication

Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparametric lines
 - Choose density for desired tone
 - tone = width / spacing

Parametric Surface Example

Winkenbach and Salesin 1996

Hatching + standard rendering

Constant-density hatching

Smooth shading with single light

Longer smoother strokes for glass

Environment mapping

Varying reflection coefficient

Standard rendering techniques are still important!

Orientable Textures

- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes

Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field

Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

Discretize and use cellular automata

Interactive Painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters

Layered Painting

Adding detail with smaller strokes

Painting Styles

- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Style Examples

Some Styles

- "Impressionist"
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games

Source: Alec Rivers

Cartoon Shading as Texture Map

Apply shading as 1D texture map

Carl Marshall 2000

Two-pass technique:

Pass 1: standard shader

Pass 2: use result from 1 as texture coordinates

Shading Variations

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details

Ruppel 1995

Do not represent reality

Photo

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

Phong shading

Metal shading (anisotropic)

Edge lines

Gooch shading (cool to warm shift gives better depth perception)

Source: Bruce Gooch

The Future

- Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!