CSCI 480 Computer Graphics Lecture 26

Visualization

Height Fields and Contours

Scalar Fields

Volume Rendering

Vector Fields

[Angel Ch. 2.11]

April 25, 2012

Jernej Barbic

University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s12/

Scientific Visualization

- Generally do not start with a 3D triangle model
- Must deal with very large data sets
 - MRI, e.g. 512 x 512 x 200 = 50MB points
 - Visible Human 512 x 512 x 1734 = 433 MB points
- Visualize both real-world and simulation data
- User interaction
- Automatic search for relevant data

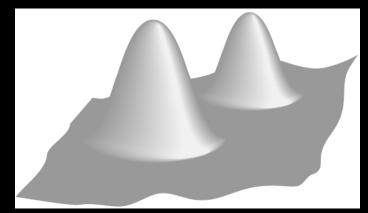
Types of Data

- Scalar fields (3D volume of scalars)
 - E.g., x-ray densities (MRI, CT scan)
- Vector fields (3D volume of vectors)
 - E.g., velocities in a wind tunnel
- Tensor fields (3D volume of tensors [matrices])
 - E.g., stresses in a mechanical part
- Static or dynamic through time

Height Field

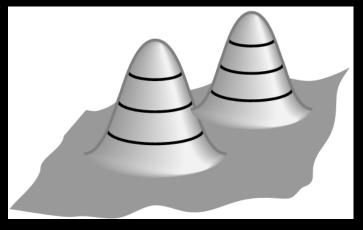
Visualizing an explicit function

$$z = f(x,y)$$



Adding contour curves

$$g(x,y) = c$$



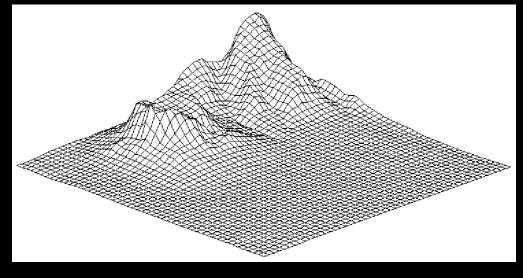
Meshes

- Function is sampled (given) at x_i, y_i, 0 ≤ i, j ≤ n
- Assume equally spaced

$$x_i = x_0 + i\Delta x$$
$$y_j = y_0 + j\Delta y$$

$$z_{ij} = f(x_i, y_j)$$

- Generate quadrilateral or triangular mesh
- [Assignment 1]



Contour Curves

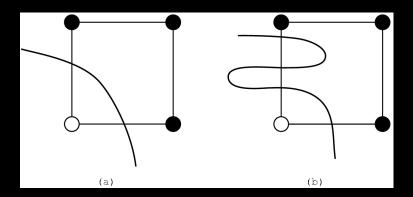
- Recall: implicit curve f(x,y) = 0
- f(x,y) < 0 inside, f(x,y) > 0 outside
- Here: contour curve at f(x,y) = c
- Implicit function f sampled at regular intervals for x,y

$$\begin{vmatrix} x_i = x_0 + i\Delta x \\ y_j = y_0 + j\Delta y \end{vmatrix}$$

How can we draw the curve?

Marching Squares

- Sample function f at every grid point x_i, y_i
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \le c$ or $f_{ij} > c$
- Distinguish those cases for each corner x
 - White: f_{i i} ≤ c
 - Black: $f_{ij} > c$
- Now consider cases for curve
- Assume "smooth"

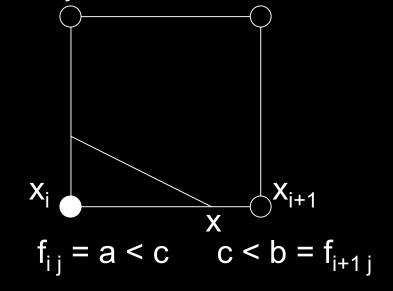


Interpolating Intersections

- Approximate intersection
 - Midpoint between x_i, x_{i+1} and y_i, y_{i+1}
 - Better: interpolate
- If f_{ij} = a is closer to c than b = f_{i+1j} then intersection is closer to (x_i, y_i):

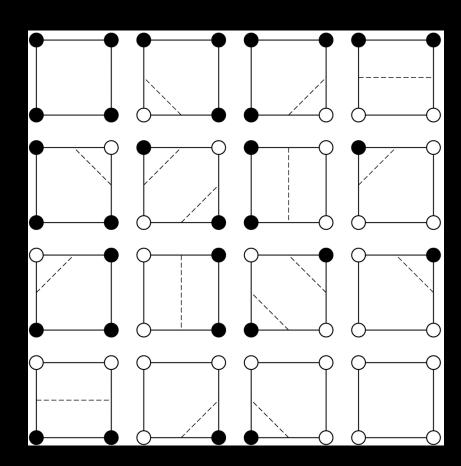
$$\frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}$$

 Analogous calculation for y direction

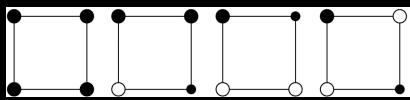


Cases for Vertex Labels

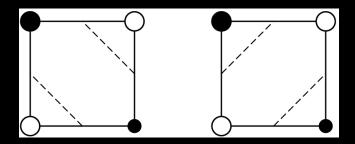
16 cases for vertex labels



4 unique cases modulo symmetries

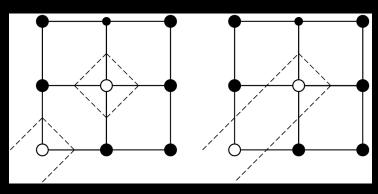


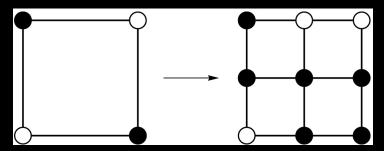
Ambiguities of Labelings



Ambiguous labels

Different resulting contours



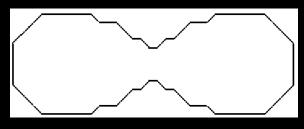


Resolution by subdivision (if such higher resolution available / possible)

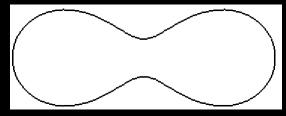
Marching Squares Examples

Ovals of Cassini, 50 x 50 grid

$$f(x,y) = (x^2 + y^2 + a^2)^2 - 4a^2x^2 - b^4$$
$$a = 0.49, b = 0.5$$

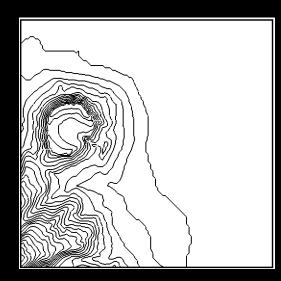


Midpoint



Interpolation

Contour plot of Honolulu data



Outline

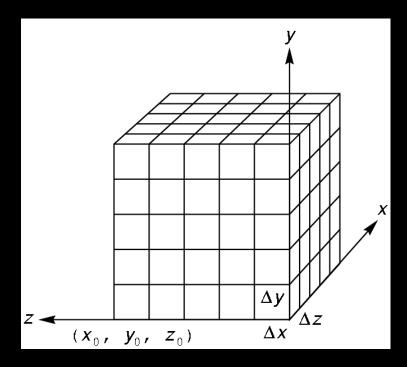
- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

Scalar Fields

- Volumetric data sets
- Example: tissue density
- Assume again regularly sampled

$$x_i = x_0 + i\Delta x$$
$$y_j = y_0 + j\Delta y$$
$$z_k = z_0 + k\Delta z$$

Represent as voxels

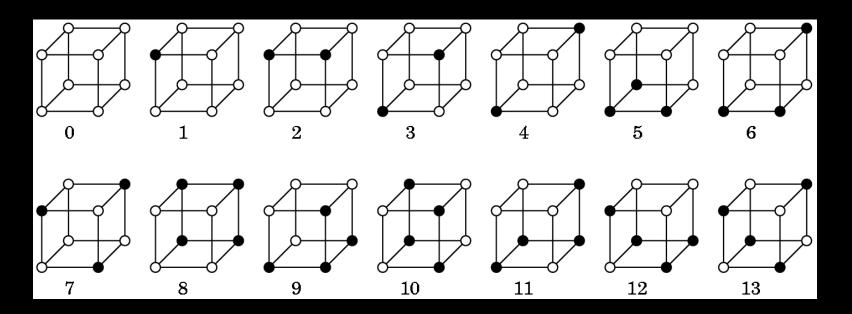


Isosurfaces

- f(x,y,z) represents volumetric data set
- Two rendering methods
 - Isosurface rendering
 - Direct volume rendering (use all values [next])
- Isosurface given by f(x,y,z) = c
- Recall implicit surface g(x, y, z):
 - -g(x, y, z) < 0 inside
 - -g(x, y, z) = 0 surface
 - -g(x, y, z) > 0 outside
- Generalize right-hand side from 0 to c

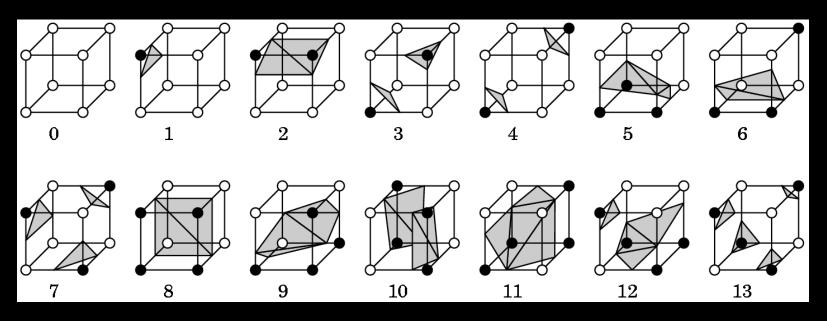
Marching Cubes

- Display technique for isosurfaces
- 3D version of marching squares
- 14 cube labelings (after elimination of symmetries)



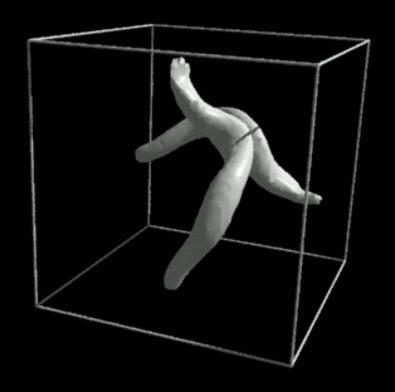
Marching Cube Tessellations

- Generalize marching squares, just more cases
- Interpolate as in 2D
- Ambiguities similar to 2D

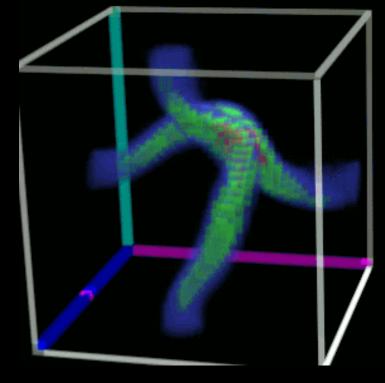


Volume Rendering

- Sometimes isosurfaces are unnatural or do not give sufficient information
- Use all voxels and transparency (α-values)



Ray-traced isosurface



Volume rendering

Surface vs. Volume Rendering

- 3D model of surfaces
- Convert to triangles
- Draw primitives
- Lose or disguise data
- Good for opaque objects

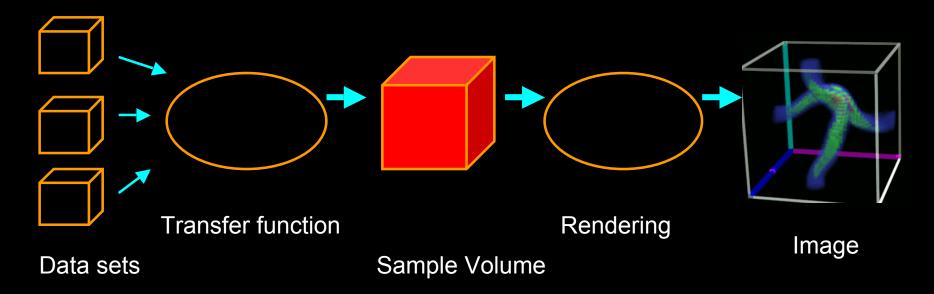
- Scalar field in 3D
- Convert it to RGBA values
- Render volume "directly"
- See data as given
- Good for complex objects

Sample Applications

- Medical
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
- Engineering and Science
 - Computational Fluid Dynamic (CFD)
 - Aerodynamic simulations
 - Meteorology
 - Astrophysics

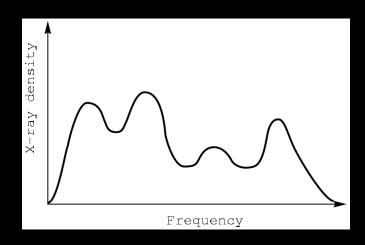
Volume Rendering Pipeline

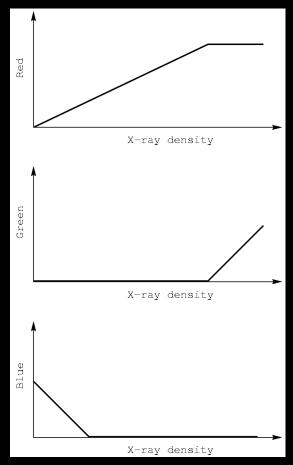
- Transfer function: converts input data set to colors and opacities
 - Example input: 256 x 256 x 256 x 8 bytes = 128 MB
 - Convert to 24 bit color, 8 bit opacity



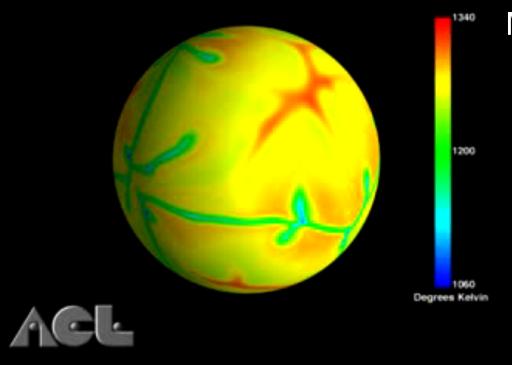
Transfer Functions

- Transform scalar data values to RGBA values
- Apply to every voxel in volume
- Highly application dependent
- Start from data histogram
- Opacity for emphasis

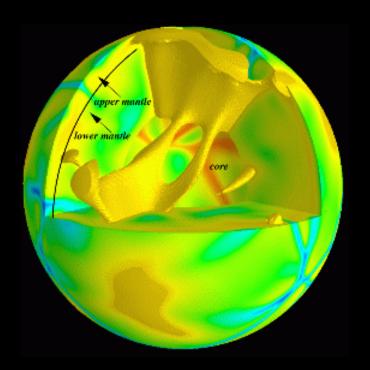




Transfer Function Example



Mantle Heat Convection



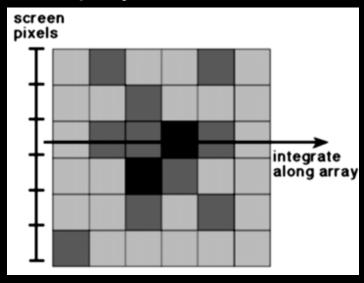
Scientific Computing and Imaging (SCI) University of Utah

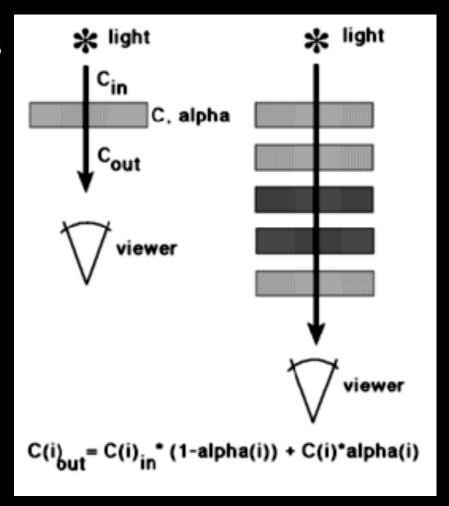
Volume Ray Casting

- Three volume rendering techniques
 - Volume ray casting
 - Splatting
 - 3D texture mapping
- Ray Casting
 - Integrate color through volume
 - Consider lighting (surfaces?)
 - Use regular x,y,z data grid when possible
 - Finite elements when necessary (e.g., ultrasound)
 - 3D-rasterize geometrical primitives

Accumulating Opacity

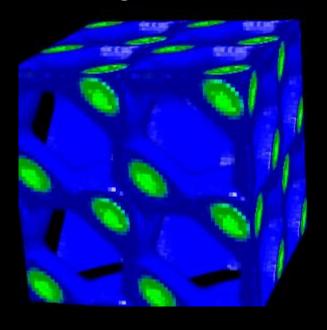
- α = 1.0 is opaque
- Composite multiple layers according to opacity
- Use local gradient of opacity for enhanced display of boundaries





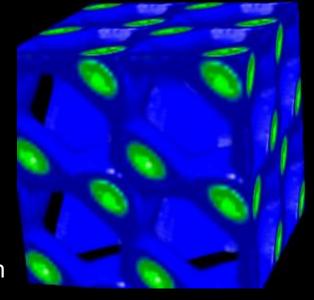
Trilinear Interpolation

- Interpolate to compute RGBA away from grid
- Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation



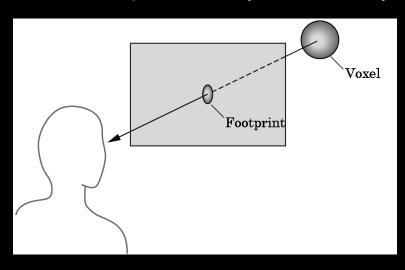
Nearest neighbor

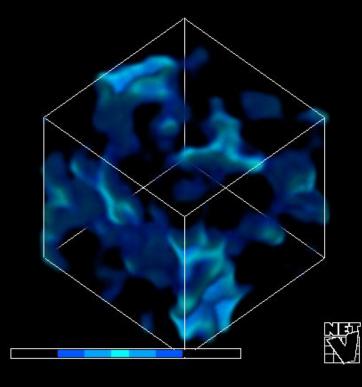
Trilinear interpolation



Splatting

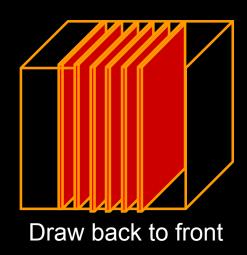
- Alternative to ray tracing
- Assign shape to each voxel (e.g., Gaussian)
- Project onto image plane (splat)
- Draw voxels back-to-front
- Composite (α -blend)





3D Textures

- Alternative to ray tracing, splatting
- Build a 3D texture (including opacity)
- Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware
- Few polygons, much texture memory



3D RGBA texture

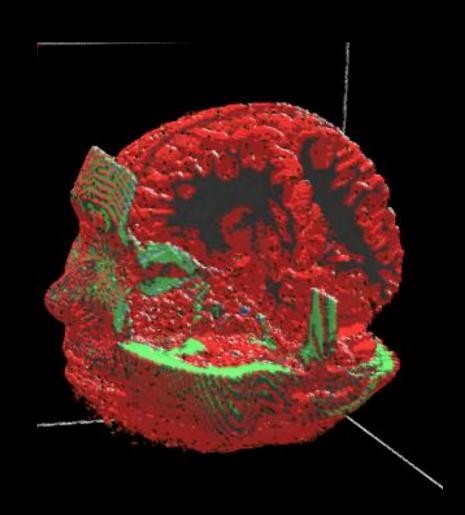
Example: 3D Textures

Example: 3D Textures

Emil Praun'01

Other Techniques

 Use CSG for cut-aways



Acceleration of Volume Rendering

- Basic problem: Huge data sets
- Must program for locality (cache)
- Divide into multiple blocks if necessary
 - Example: marching cubes
- Use error measures to stop iteration
- Exploit parallelism

Outline

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

Vector Fields

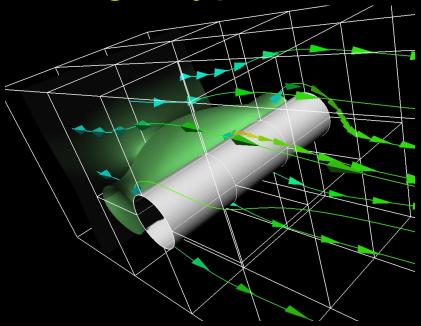
- Visualize vector at each (x,y,z) point
 - Example: velocity field
 - Example: hair

Hedgehogs

- Use 3D directed line segments (sample field)
- Orientation and magnitude determined by vector
- Animation
 - Use for still image
 - Particle systems

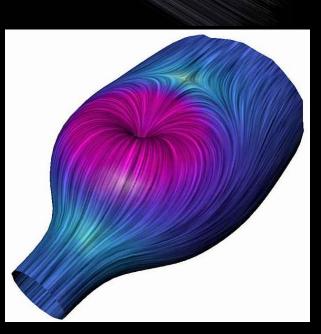
Blood flow in human carotid artery

Using Glyphs and Streaklines

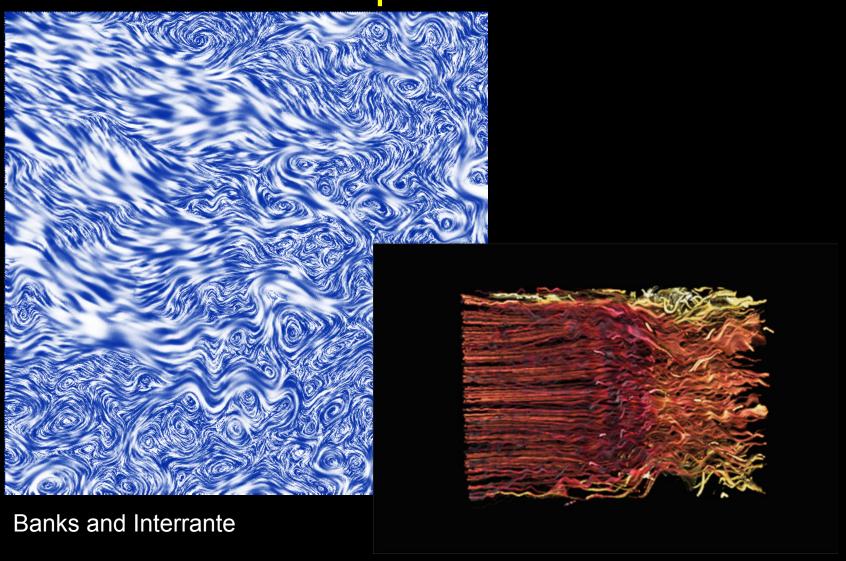


Glyphs for air flow University of Utah

Glyph = marker (for example, an arrow) used for data visualization

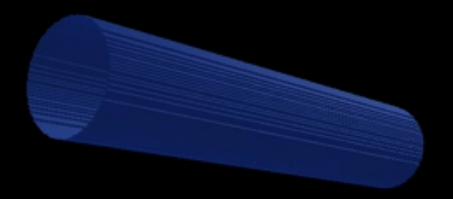


More Flow Examples



Example: Jet Shockwave

P. Sutton University of Utah



http://www.sci.utah.edu/

Summary

- Height Fields and Contours
- Scalar Fields
 - Isosurfaces
 - Marching cubes
- Volume Rendering
 - Volume ray tracing
 - Splatting
 - 3D Textures
- Vector Fields
 - Hedgehogs
 - Animated and interactive visualization