CSCI 480 Computer Graphics Lecture 5

Viewing and Projection

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections
[Angel, Ch. 5]

January 30, 2013

Jernej Barbic

University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s13/

Reminder: Affine Transformations

 Given a point [x y z], form homogeneous coordinates [x y z 1].

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

The transformed point is [x' y' z'].

Transformation Matrices in OpenGL

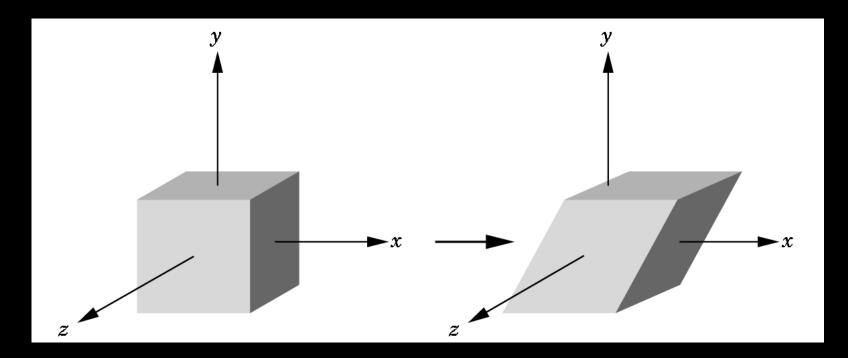
- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);

```
m = \{m_1, m_2, ..., m_{16}\} represents
\begin{bmatrix} m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \\ m_4 & m_8 & m_{12} & m_{16} \end{bmatrix}
```

Some books transpose all matrices!

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed



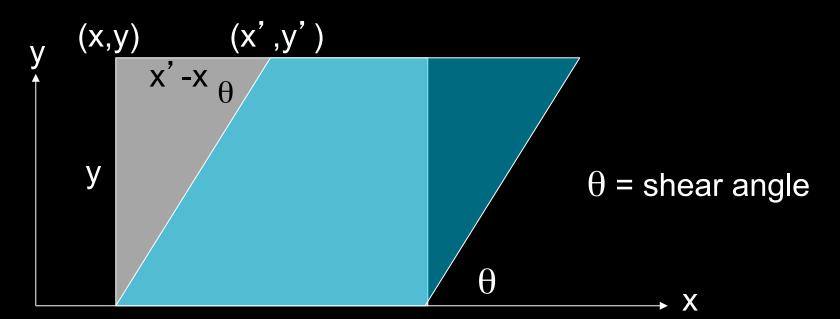
Specification via Shear Angle

```
• \cot(\theta) = (x' - x) / y
• z' = z
```

•
$$\cot(\theta) = (x' - x) / y$$

• $x' = x + y \cot(\theta)$
• $y' = y$
• $z' = z$

$$H_{x}(\theta) = \begin{bmatrix} 1 & \cot(\theta) & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Specification via Ratios

- For example, shear in both x and z direction
- Leave y fixed
- Slope α for x-shear, γ for z-shear

Solve
$$H_{x,z}(\alpha,\gamma) \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + \alpha y \\ y \\ z + \gamma y \\ 1 \end{bmatrix}$$

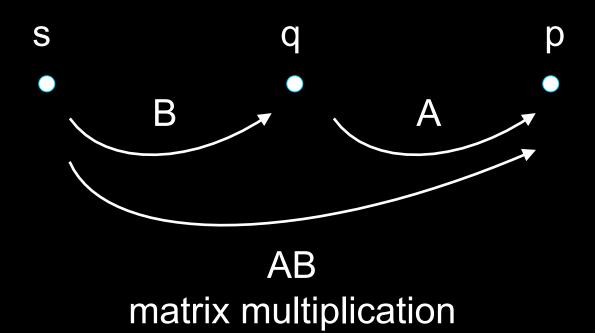
Yields

$$H_{x,z}(lpha, \gamma) = \left[egin{array}{cccc} 1 & lpha & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & \gamma & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Composing Transformations

Let p = A q, and q = B s.

• Then p = (A B) s.



Composing Transformations

 Fact: Every affine transformation is a composition of rotations, scalings, and translations

- So, how do we compose these to form an x-shear?
- Exercise!

Outline

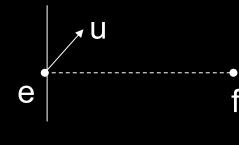
- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

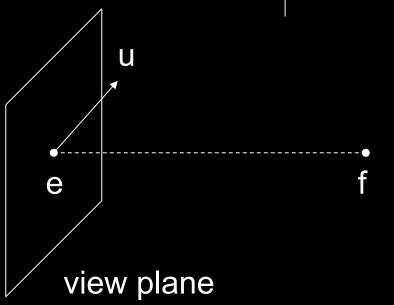
Transform Camera = Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
- e = eye point
- f = focus point
- u = up vector





OpenGL code

```
void display()
 glClear (GL COLOR BUFFER BIT |
          GL DEPTH BUFFER BIT);
 glMatrixMode (GL MODELVIEW);
 glLoadIdentity();
 gluLookAt (e_x, e_y, e_z, f_x, f_y, f_z, u_x, u_y, u_z);
 glTranslatef(x, y, z);
 renderBunny();
 glutSwapBuffers();
```

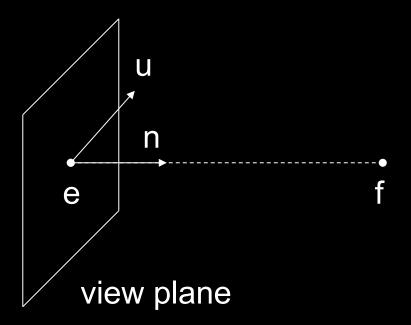
Implementing the Look-At Function

Plan:

- 1. Transform world frame to camera frame
 - Compose a rotation R with translation T
 - -W=TR
- 2. Invert W to obtain viewing transformation V
 - $V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1}$
 - Derive R, then T, then R⁻¹ T⁻¹

World Frame to Camera Frame I

- Camera points in negative z direction
- n = (f e) / |f e| is unit normal to view plane
- Therefore, R maps $[0 \ 0 \ -1]^T$ to $[n_x \ n_y \ n_z]^T$



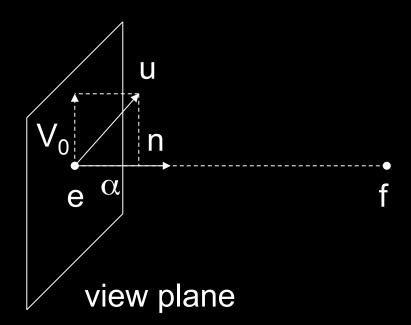
World Frame to Camera Frame II

- R maps [0,1,0]^T to projection of u onto view plane
- This projection v equals:

$$-\alpha = (u \cdot n) / |n| = u \cdot n$$

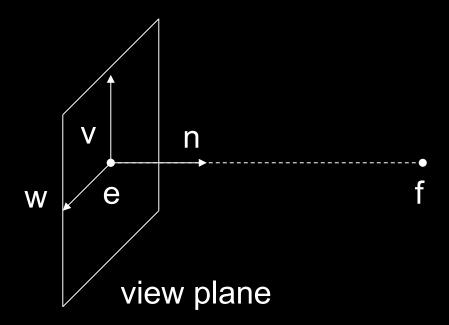
$$- v_0 = u - \alpha n$$

$$- v = v_0 / |v_0|$$



World Frame to Camera Frame III

- Set w to be orthogonal to n and v
- w = n x v
- (w, v, -n) is right-handed



Summary of Rotation

- gluLookAt(e_x , e_y , e_z , f_x , f_y , f_z , u_x , u_y , u_z);
- n = (f e) / |f e|
- $v = (u (u \cdot n) n) / |u (u \cdot n) n|$
- w = n x v
- Rotation must map:
 - -(1,0,0) to w
 - -(0,1,0) to v
 - -(0,0,-1) to n

$\lceil w_{\chi} \rceil$	v_{χ}	$-n_{\chi}$	0
w_{y}	v_{y}	$-n_{y}$	0
w_z	v_z	$-n_z$	0
$\begin{bmatrix} 0 \end{bmatrix}$	0	0	1

World Frame to Camera Frame IV

• Translation of origin to $e = [e_x \ e_y \ e_z \ 1]^T$

$$T = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Frame to Rendering Frame

- $V = W^{-1} = (T R)^{-1} = R^{-1} T^{-1}$
- R is rotation, so $R^{-1} = R^{T}$

$$R^{-1} = \begin{bmatrix} w_x & w_y & w_z & 0 \\ v_x & v_y & v_z & 0 \\ -n_x & -n_y & -n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• T is translation, so T⁻¹ negates displacement

$$T^{-1} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Putting it Together

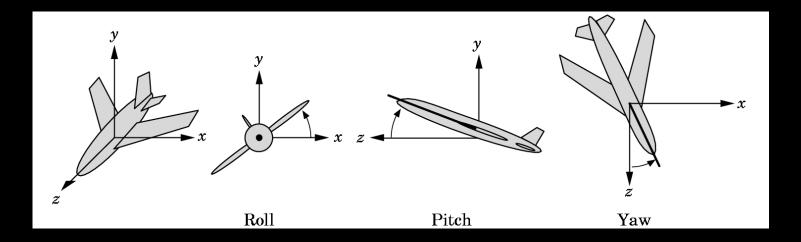
Calculate V = R⁻¹ T⁻¹

$$V = \begin{bmatrix} w_x & w_y & w_z & -w_x e_x - w_y e_y - w_z e_z \\ v_x & v_y & v_z & -v_x e_x - v_y e_y - v_z e_z \\ -n_x & -n_y & -n_z & n_x e_x + n_y e_y + n_z e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- This is different from book [Angel, Ch. 5.3.2]
- There, u, v, n are right-handed (here: u, v, -n)

Other Viewing Functions

Roll (about z), pitch (about x), yaw (about y)



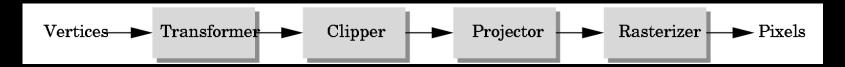
Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

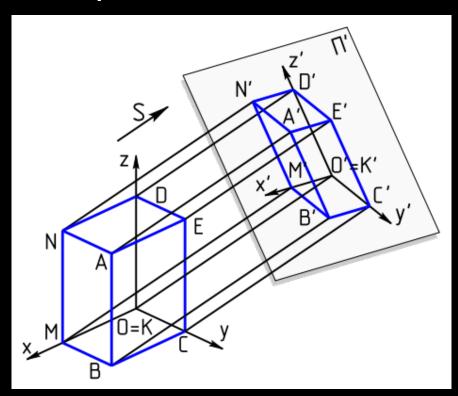
Recall geometric pipeline



- Projection takes 3D to 2D
- Projections are not invertible
- Projections also described by 4x4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

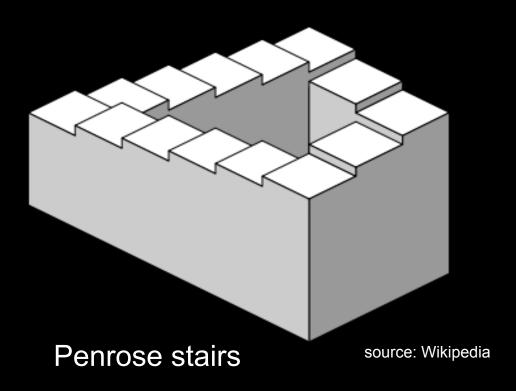
- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane



24

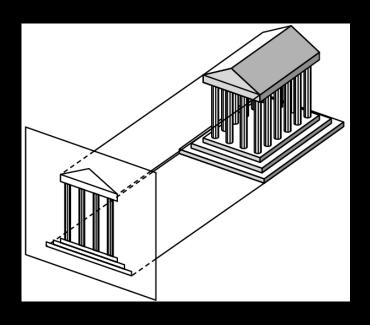
Parallel Projection

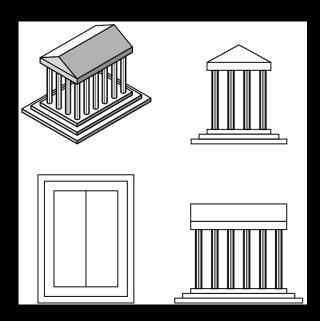
- Problem: objects far away do not appear smaller
- Can lead to "impossible objects":



Orthographic Projection

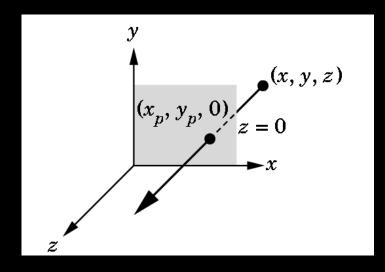
- A special kind of parallel projection: projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)





Orthographic Projection Matrix

- Project onto z = 0
- $x_p = x$, $y_p = y$, $z_p = 0$
- In homogenous coordinates



$\lceil x_p \rceil$	[7 1	0	0	0]	$\lceil x \rceil$
$\begin{vmatrix} y_p \end{vmatrix}$		0	1	0	0	l y l
$ z_p $		0	0	0	0	z
$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} =$	0	0	0	1		

Perspective

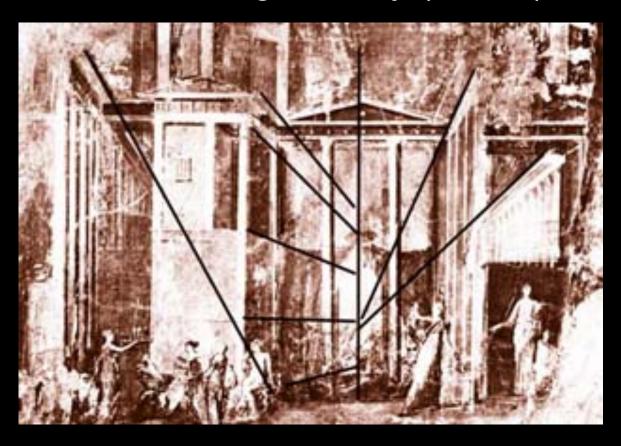
- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings:

Lascaux, France

source: Wikipedia

Discovery of Perspective

Foundation in geometry (Euclid)



Mural from Pompeii, Italy

Middle Ages

- Art in the service of religion
- Perspective abandoned or forgotten



Ottonian manuscript, ca. 1000

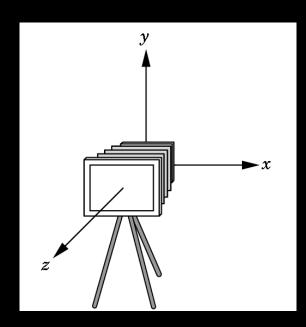
Renaissance

Rediscovery, systematic study of perspective

Filippo Brunelleschi Florence, 1415

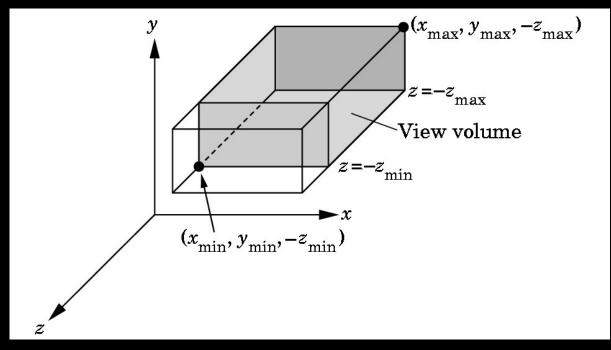
Projection (Viewing) in OpenGL

Remember: camera is pointing in the negative z direction



Orthographic Viewing in OpenGL

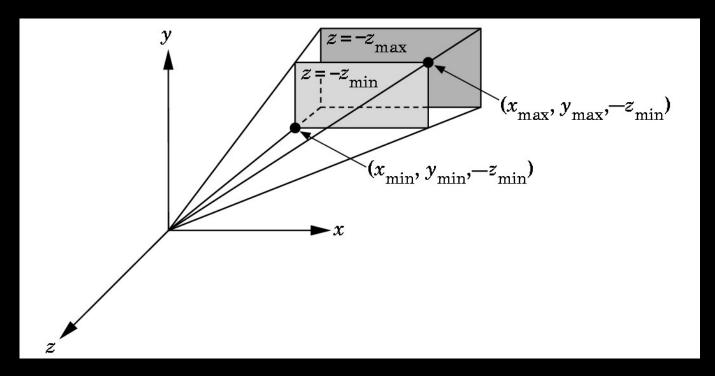
glOrtho(xmin, xmax, ymin, ymax, near, far)



$$z_{min}$$
 = near, z_{max} = far

Perspective Viewing in OpenGL

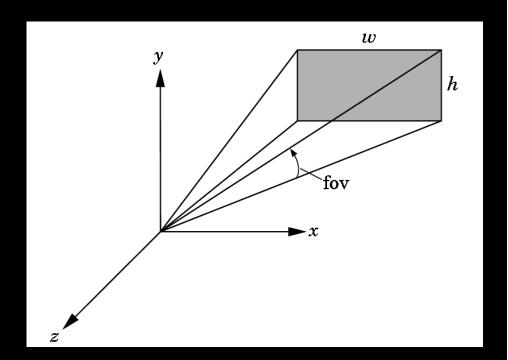
- Two interfaces: glFrustum and gluPerspective
- glFrustum(xmin, xmax, ymin, ymax, near, far);



$$z_{min}$$
 = near, z_{max} = far

Field of View Interface

- gluPerspective(fovy, aspectRatio, near, far);
- near and far as before
- aspectRatio = w / h
- Fovy specifies field of view as height (y) angle



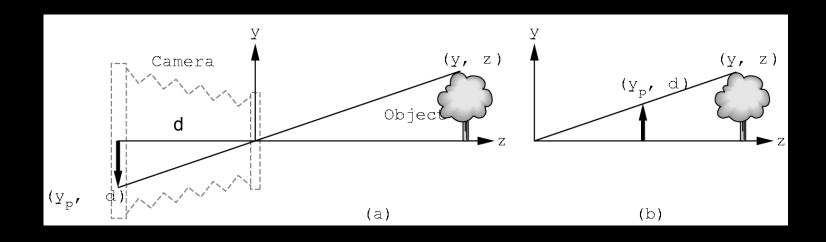
OpenGL code

```
void reshape(int x, int y)
{
  glViewport(0, 0, x, y);

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();

  gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);
}
```

Perspective Viewing Mathematically



- d = focal length
- $y/z = y_p/d$ so $y_p = y/(z/d) = y d / z$
- Note that y_p is non-linear in the depth z!

Exploiting the 4th Dimension

Perspective projection is not affine:

$$M\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix}$$
 has no solution for M

Idea: exploit homogeneous coordinates

$$p = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 for arbitrary $w \neq 0$

Perspective Projection Matrix

Use multiple of point

$$(z/d) \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix}$$

Solve

$$M \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix} \quad \text{with} \quad M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

Projection Algorithm

Input: 3D point (x,y,z) to project

- 1. Form $[x \ y \ z \ 1]^T$
- 2. Multiply M with $[x \ y \ z \ 1]^T$; obtaining $[X \ Y \ Z \ W]^T$
- 3. Perform perspective division: X / W, Y / W, Z / W

Output: (X / W, Y / W, Z / W) (last coordinate will be d)

Perspective Division

Normalize [x y z w]^T to [(x/w) (y/w) (z/w) 1]^T

Perform perspective division after projection

 Projection in OpenGL is more complex (includes clipping)