CSCI 480 Computer Graphics Lecture 8

## **Splines**

February 11, 2013 Jernej Barbic University of Southern California

http://www-bcf.usc.edu/~jbarbic/cs480-s13/

Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12]

1

#### **Roller coaster**

- Next programming assignment involves creating a 3D roller coaster animation
- We must model the 3D curve describing the roller coaster, but how?



### **Modeling Complex Shapes**

- We want to build models of very complicated objects
- Complexity is achieved using simple pieces
  - polygons,
  - parametric curves and surfaces, or
  - implicit curves and surfaces
- This lecture: parametric curves



#### What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering

## **Curve Representations**

- Explicit: y = f(x)
  - Must be a function (single-valued)
  - Big limitation—vertical lines?
- Parametric: (x,y) = (f(u),g(u))
  - + Easy to specify, modify, control
  - Extra "hidden" variable u, the *parameter*
- Implicit: f(x,y) = 0
  - + y can be a multiple valued function of x
  - Hard to specify, modify, control



## Parameterization of a Curve

- *Parameterization* of a curve: how a change in u moves you along a given curve in xyz space.
- Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW...



## **Polynomial Interpolation**

- An *n*-th degree polynomial fits a curve to n+1 points
  - called Lagrange Interpolation
  - result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
  - this method is poor
- We usually want the curve to be as smooth as possible
  - minimize the wiggles
  - high-degree polynomials are bad



Lagrange interpolation, degree=15

# **Splines: Piecewise Polynomials**

- A spline is a *piecewise polynomial:* Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points
- *Cubic* piecewise polynomials are the most common:
  - They are the lowest order polynomials that
    - 1. interpolate two points and
    - allow the gradient at each point to be defined (C<sup>1</sup> continuity is possible).
  - Piecewise definition gives local control.
  - Higher or lower degrees are possible, of course.



a spline

# **Piecewise Polynomials**

- Spline: many polynomials pieced together
- Want to make sure they fit together nicely



# **Splines**

- Types of splines:
  - Hermite Splines
  - Bezier Splines
  - Catmull-Rom Splines
  - Natural Cubic Splines
  - B-Splines
  - NURBS



Splines can be used to model both curves and surfaces



#### Cubic Curves in 3D

- Cubic polynomial:
  - $p(u) = au^{3}+bu^{2}+cu+d = [u^{3} u^{2} u 1] [a b c d]^{T}$
  - a,b,c,d are 3-vectors, u is a scalar
- Three cubic polynomials, one for each coordinate:

$$- x(u) = a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x}$$
  
- y(u) = a\_{y}u^{3} + b\_{y}u^{2} + c\_{y}u + d\_{y}  
= (u) = a\_{y}u^{3} + b\_{y}u^{2} + c\_{y}u + d\_{y}

- $z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$
- In matrix notation:

$$\begin{bmatrix} x(u) & y(u) & z(u) \end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$

• Or simply:  $p = [u^3 u^2 u 1] A$ 

#### **Cubic Hermite Splines**



We want a way to specify the end points and the slope at the end points!

#### **Deriving Hermite Splines**

 Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval [0,1]:

 $p(0) = p_1 = (x_1, y_1, z_1)$   $p(1) = p_2 = (x_2, y_2, z_2)$   $p'(0) = \overline{p}_1 = (\overline{x}_1, \overline{y}_1, \overline{z}_1)$   $p'(1) = \overline{p}_2 = (\overline{x}_2, \overline{y}_2, \overline{z}_2)$ the user constraints

- Assume cubic form:  $p(u) = au^3 + bu^2 + cu + d$
- Four unknowns: *a*, *b*, *c*, *d*

#### **Deriving Hermite Splines**

• Assume cubic form:  $p(u) = au^3 + bu^2 + cu + d$ 

$$p_{1} = p(0) = d$$

$$p_{2} = p(1) = a + b + c + d$$

$$\overline{p_{1}} = p'(0) = c$$

$$\overline{p_{2}} = p'(1) = 3a + 2b + c$$

- Linear system: 12 equations for 12 unknowns (however, can be simplified to 4 equations for 4 unknowns)
- Unknowns: *a*, *b*, *c*, *d* (each of *a*, *b*, *c*, *d* is a 3-vector)

#### **Deriving Hermite Splines**

$$d = p_1$$

$$a + b + c + d = p_2$$

$$c = \overline{p_1}$$

$$3a + 2b + c = \overline{p_2}$$

Rewrite this 12x12 system as a 4x4 system:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \overline{x_1} & \overline{y_1} & \overline{z_1} \\ \overline{x_2} & \overline{y_2} & \overline{z_2} \end{bmatrix}$$

# The Cubic Hermite Spline Equation

• After inverting the 4x4 matrix, we obtain:

| $\begin{bmatrix} x \ y \ z \end{bmatrix} =$ | $\begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$ | -2<br>3 -<br>0 | 1<br>-2<br>1 | $     \begin{array}{c}       1 \\       -1 \\       0     \end{array} $ | $\begin{bmatrix} x_1 \\ x_2 \\ \overline{x}_1 \end{bmatrix}$ | $y_1$ $y_2$ $\overline{y}_1$ | $\begin{bmatrix} z_1 \\ z_2 \\ \overline{z}_1 \end{bmatrix}$ |
|---------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|--------------------------------------------------------------|
| Î                                           | Ť                                                 | 1                                            | 0              | 0            | 0                                                                       | $\overline{x}_2$                                             | $\overline{y}_2$             | $\overline{z}_2$                                             |
| point on                                    | parameter                                         |                                              | -              | isis         |                                                                         |                                                              |                              | natri                                                        |

point on<br/>the splineparameter<br/>vectorbasis<br/>basis<br/>(what the user gets to pick)

- This form is typical for splines
  - basis matrix and meaning of control matrix change with the spline type

#### Four Basis Functions for Hermite Splines

transpose

$$p(u) = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix}^{T} \begin{bmatrix} p_{1} \\ p_{2} \\ \overline{p}_{1} \\ \overline{p}_{2} \end{bmatrix}$$

**4** Basis Functions



Every cubic Hermite spline is a linear combination (blend) of these 4 functions.

#### **Piecing together Hermite Splines**

It's easy to make a multi-segment Hermite spline:

- each segment is specified by a cubic Hermite curve
- just specify the position and tangent at each "joint" (called *knot*)
- the pieces fit together with matched positions and first derivatives
- gives C1 continuity



## Hermite Splines in Adobe Illustrator



# **Bezier Splines**

- Variant of the Hermite spline
- Instead of endpoints and tangents, four control points
  - points P1 and P4 are on the curve
  - points P2 and P3 are off the curve
  - p(0) = P1, p(1) = P4,
  - p'(0) = 3(P2-P1), p'(1) = 3(P4 P3)
- Basis matrix is derived from the Hermite basis (or from scratch)
- Convex Hull property: curve contained within the convex hull of control points





# The Bezier Spline Matrix

$$\begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix}$$

Hermite basis Bezier to Hermite Bezier

control matrix

$$= \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \\ x_{4} & y_{4} & z_{4} \end{bmatrix}$$
  
Bezier basis Bezier

## **Bezier Blending Functions**



$$p(t) = \begin{bmatrix} (1-t)^3 \\ 3t(1-t)^2 \\ 3t^2(1-t) \\ t^3 \end{bmatrix}^{T} \begin{bmatrix} p_1 \\ p_2 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

Also known as the order 4, degree 3 Bernstein polynomials

Nonnegative, sum to 1

The entire curve lies inside the polyhedron bounded by the control points

## **DeCasteljau Construction**



Efficient algorithm to evaluate Bezier splines. Similar to Horner rule for polynomials. Can be extended to interpolations of 3D rotations.

# **Catmull-Rom Splines**

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C<sup>1</sup> continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with *built-in C<sup>1</sup> continuity*.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.



## **Constructing the Catmull-Rom Spline**

Suppose we are given n control points in 3-D:  $p_1$ ,  $p_2$ , ...,  $p_n$ .

For a Catmull-Rom spline, we set the tangent at  $p_i$  to  $s^*(p_{i+1} - p_{i-1})$  for i=2, ..., n-1, for some s (often s=0.5)

s is *tension parameter*: determines the magnitude (but not direction!) of the tangent vector at point  $p_i$ 

What about endpoint tangents? Use extra control points  $p_0$ ,  $p_{n+1}$ .

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between  $p_i$  and  $p_{i+1}$  is completely determined by  $p_{i-1}$ ,  $p_i$ ,  $p_{i+1}$ ,  $p_{i+2}$ .

# Catmull-Rom Spline Matrix

$$\begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -s & 2-s & s-2 & s \\ 2s & s-3 & 3-2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix}$$
  
basis control matrix

- Derived in way similar to Hermite and Bezier
- Parameter s is typically set to s=1/2.

# Splines with More Continuity?

- So far, only C<sup>1</sup> continuity.
- How could we get C<sup>2</sup> continuity at control points?
- Possible answers:
  - Use higher degree polynomials
    - degree 4 = quartic, degree 5 = quintic, ... but these get computationally expensive, and sometimes wiggly
  - Give up local control  $\rightarrow$  natural cubic splines
    - A change to any control point affects the entire curve
  - Give up interpolation  $\rightarrow$  cubic B-splines
    - Curve goes near, but not through, the control points

#### **Comparison of Basic Cubic Splines**

| Туре             | Local Control | Continuity | Interpolation |
|------------------|---------------|------------|---------------|
| Hermite          | YES           | C1         | YES           |
| Bezier           | YES           | C1         | YES           |
| Catmull-Rom      | YES           | C1         | YES           |
| Natural          | NO            | C2         | YES           |
| <b>B-Splines</b> | YES           | C2         | NO            |

Summary:

Cannot get C2, interpolation and local control with cubics

# **Natural Cubic Splines**

- If you want 2nd derivatives at joints to match up, the resulting curves are called *natural cubic splines*
- It's a simple computation to solve for the cubics' coefficients. (See *Numerical Recipes in C* book for code.)
- Finding all the right weights is a global calculation (solve tridiagonal linear system)

## **B-Splines**

- Give up interpolation
  - the curve passes near the control points
  - best generated with interactive placement (because it's hard to guess where the curve will go)
- Curve obeys the convex hull property
- C2 continuity and local control are good compensation for loss of interpolation





#### **B-Spline Basis**

• We always need 3 more control points than the number of spline segments

$$M_{Bs} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}$$
$$G_{Bsi} = \begin{bmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{bmatrix}$$



#### **Other Common Types of Splines**

- Non-uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages

## How to Draw Spline Curves

- Basis matrix equation allows same code to draw any spline type
- <u>Method 1</u>: brute force
  - Calculate the coefficients
  - For each cubic segment, vary *u* from 0 to 1 (fixed step size)
  - Plug in *u* value, matrix multiply to compute position on curve
  - Draw line segment from last position to current position
- What's wrong with this approach?
  - Draws in even steps of u
  - Even steps of u does not mean even steps of x
  - Line length will vary over the curve
  - Want to bound line length
    - » too long: curve looks jagged
    - » too short: curve is slow to draw

# Drawing Splines, 2

• Method 2: recursive subdivision - vary step size to draw short lines

```
Subdivide(u0,u1,maxlinelength)
umid = (u0 + u1)/2
x0 = F(u0)
x1 = F(u1)
if |x1 - x0| > maxlinelength
Subdivide(u0,umid,maxlinelength)
Subdivide(umid,u1,maxlinelength)
else drawline(x0,x1)
```

- Variant on Method 2 subdivide based on curvature
  - replace condition in "if" statement with straightness criterion
  - draws fewer lines in flatter regions of the curve

# Summary

- Piecewise cubic is generally sufficient
- Define conditions on the curves and their continuity
- Most important:
  - basic curve properties (what are the conditions, controls, and properties for each spline type)
  - generic matrix formula for uniform cubic splines p(u) = u B G
  - given a definition, derive a basis matrix (do not memorize the matrices themselves)