CSCI 480 Computer Graphics

 Lecture 9
Lighting and Shading

> Light Sources
> Phong Illumination Model
> Normal Vectors
> [Angel Ch. 6.1-6.4]

February 13, 2013
Jernej Barbic
University of Southern California
http://www-bcf.usc.edu/~jbarbic/cs480-s13/

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Global Illumination

- Ray tracing
- Radiosity
- Photon Mapping

- Follow light rays through a scene
- Accurate, but expensive (off-line)

Raytracing Example

Martin Moeck, Siemens Lighting

Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Color determined only based on surface normal, relative camera position and relative light position
- What effects does this ignore?

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Normal Vectors

- Must calculate and specify the normal vector
- Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by ax + by +cz + d=0
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ if and only if u orthogonal to v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $n_{0}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$
- Normalize to $n=n_{0} /\left|n_{0}\right|$

Normals of a Plane, Method II

- Method II: plane given by p_{0}, p_{1}, p_{2}
- Points must not be collinear
- Recall: $u \times v$ orthogonal to u and v
- $\mathrm{n}_{0}=\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \times\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
n_{0}=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 p
$$

- Normalize $n_{0} /\left|n_{0}\right|=2 p / 2=p$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, \boldsymbol{n}, and \boldsymbol{r} lie in the same plane
- Assume $|\||=|n|=1$, guarantee $| r|=1$

$$
\begin{aligned}
& \boldsymbol{I} \cdot \boldsymbol{n}=\cos (\theta)=\boldsymbol{n} \cdot \boldsymbol{r} \\
& \boldsymbol{r}=\alpha \boldsymbol{I}+\beta \boldsymbol{n}
\end{aligned}
$$

$$
\text { Solution: } \alpha=-1 \text { and }
$$

$$
\beta=2(I \cdot n)
$$

$$
r=2(I \cdot n) n-I
$$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties:

- Viewer position

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in center)

Point Source

- Given by a point p_{0}
- Light emitted equally in all directions
- Intensity decreases with square of distance

$$
I \propto \frac{1}{\left|p-p_{0}\right|^{2}}
$$

Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation
$\frac{1}{a+b q+c q^{2}}$

$$
\begin{aligned}
& q=\text { distance }\left|p-p_{0}\right| \\
& a, b, c \text { constants }
\end{aligned}
$$

- Softens lighting
- Better with ray tracing
- Better with radiosity

Distant Light Source

- Given by a direction vector
- Simplifies some calculations
- In OpenGL:
- Point source [xylll${ }^{\top}$
- Distant source [x y z 0] ${ }^{\top}$

Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add $\left[G_{R} G_{G} G_{B}\right]$ to every pixel on every object
- Not very interesting on its own. A cheap hack to make the scene brighter.

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = unit vector to light source
n = surface normal
$\mathbf{v}=$ unit vector to viewer
$\mathbf{r}=$ reflection of I at \mathbf{p} (determined by I and \mathbf{n})

Phong Illumination Overview

1. Start with global ambient light $\left[\mathrm{G}_{\mathrm{R}} \mathrm{G}_{\mathrm{G}} \mathrm{G}_{\mathrm{B}}\right]$
2. Add contributions from each light source
3. Clamp the final result to $[0,1]$

- Calculate each color channel (R,G,B) separately
- Light source contributions decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

$$
I_{a}=k_{a} L_{a}
$$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient $\mathrm{k}_{\mathrm{a}}, 0 \leq \mathrm{k}_{\mathrm{a}} \leq 1$
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- $\mathrm{L}_{\mathrm{a}}=$ ambient component of light source (can be set to different value for each light source)
- Note: L_{a} is not a physically meaningful quantity

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $\mathrm{k}_{\mathrm{d}}, 0 \leq \mathrm{k}_{\mathrm{d}} \leq 1$
- Angle of incoming light is important

Lambert's Law

Intensity depends on angle of incoming light.

Diffuse Light Intensity Depends On Angle Of Incoming Light

- Recall
$I=$ unit vector to light
$\boldsymbol{n}=$ unit surface normal
$\theta=$ angle to normal
- $\cos \theta=\boldsymbol{I} \cdot \boldsymbol{n}$
- $\mathrm{l}_{\mathrm{d}}=\mathrm{k}_{\mathrm{d}} \mathrm{L}_{\mathrm{d}}(\boldsymbol{I} \cdot \boldsymbol{n})$
- With attenuation:

$$
I_{d}=\frac{k_{d} L_{d}}{a+b q+c q^{2}}(l \cdot n)
$$

$\mathrm{q}=$ distance to light source,
$L_{d}=$ diffuse component of light

Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}}, 0 \leq \mathrm{k}_{\mathrm{s}} \leq 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give mirror effect (need other techniques)

specular reflection

specular highlights

Specular Reflection

- Recall

$$
\begin{aligned}
& \boldsymbol{v}=\text { unit vector to camera } \\
& \boldsymbol{r}=\text { unit reflected vector } \\
& \phi=\text { angle between } \boldsymbol{v} \text { and } \boldsymbol{r}
\end{aligned}
$$

- $\cos \phi=\boldsymbol{v} \cdot \boldsymbol{r}$

- $\mathrm{I}_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \mathrm{L}_{\mathrm{s}}(\cos \phi)^{\alpha}$
- L_{s} is specular component of light
- α is shininess coefficient
- Can add distance term as well

Shininess Coefficient

Higher α
gives narrower curves
high α

Summary of Phong Model

- Light components for each color:
- Ambient $\left(L_{a}\right)$, diffuse $\left(L_{d}\right)$, specular $\left(L_{s}\right)$
- Material coefficients for each color:
- Ambient $\left(k_{a}\right)$, diffuse $\left(k_{d}\right)$, specular $\left(k_{s}\right)$
- Distance q for surface point from light source

$$
I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(l \cdot n)+k_{s} L_{s}(r \cdot v)^{\alpha}\right)+k_{a} L_{a}
$$

$I=$ unit vector to light
$\boldsymbol{r}=\boldsymbol{I}$ reflected about \boldsymbol{n}
$\boldsymbol{n}=$ surface normal
$\boldsymbol{v}=$ vector to viewer

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading

Lighting properties of a human face were captured and face re-rendered; Institute for Creative Technologies

Summary

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

