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Figure 1: Model reduction with a large number of localized degrees of freedom: Left: nonlinear reduced simulation of an oak tree (41
branches (r = 20), 1394 leaves (r = 8), d = 1435 domains, r̂ = 11,972 total DOFs) running at 5 fps. Right: simulation detail.

Abstract

This paper shows a method to extend 3D nonlinear elasticity model
reduction to open-loop multi-level reduced deformable structures.
Given a volumetric mesh, we decompose the mesh into several
subdomains, build a reduced deformable model for each domain,
and connect the domains using inertia coupling. This makes model
reduction deformable simulations much more versatile: localized
deformations can be supported without prohibitive computational
costs, parts can be re-used and precomputation times shortened.
Our method does not use constraints, and can handle large do-
main rigid body motion in addition to large deformations, due to
our derivation of the gradient and Hessian of the rotation matrix in
polar decomposition. We show real-time examples with multi-level
domain hierarchies and hundreds of reduced degrees of freedom.
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1 Introduction
Fast simulation of deformable models is an important problem in
computer graphics, with applications in film industry, CAD/CAM,
surgery simulation and video games. Model reduction is a popular
method for deformable model simulation, mainly because it can ap-
proximate complex physical systems at a low computational cost.

The key idea of model reduction is to project the high-dimensional
equations of motions to a suitably chosen low-dimensional space
where the dynamics have properties similar to the original system,
but can be timestepped much more quickly [Krysl et al. 2001].
Real-time projection-based model reduction for deformable objects
has, however, suffered from an important limitation: the reduction
basis is global in space and time. Such bases require a large number
of modal vectors to capture local deformations. More importantly,
because nonlinear modal elasticity requires implicit integration for
stability, and because all global basis vectors overlap in space, each
timestep requires (at least) solving a r̂× r̂ dense linear system cost-
ing O(r̂ 3), where r̂ is the number of basis vectors. In practice, this
has limited real-time nonlinear reduced simulations to less than (ap-
proximately) one hundred degrees of freedom [An et al. 2008].

In this paper, we present an approach to make model reduction
adaptive in space, by decomposing the deformable object into sev-
eral components (the domains, see Figure 2). We pre-process the
reduced dynamics of each domain separately, and then couple the
domains using inertia forces. Assuming a decomposition free of
loops, the resulting system supports large deformation dynamics
both globally and locally within each domain (e.g., oak leaves in
Figure 1). For the geometrically nonlinear FEM material model,
the resulting nonlinear system can be timestepped at rates indepen-
dent of the underlying geometric or material complexity. With ex-
act reduced internal force evaluations on d domains with r degrees
of freedom each, the running time of one timestep of our method
is O(dr4)�O(r̂ 4), for r̂ = dr, and could be further decreased to
O(dr3) using approximate reduced forces [An et al. 2008].

The idea of decomposing a deformable object for efficient simu-
lation has been previously extensively explored in the engineering
community, usually under the names of domain decomposition and
substructuring. However, previous methods either did not pursue
reduction in each domain, or limited the domains to small defor-
mations. Our method is related to the well-known Featherstone’s
algorithm for linked rigid body systems, but differs from it by sim-
ulating large deformations involving large interface rotations, com-
bined with model reduction. While the Featherstone’s algorithm
supports kinematic chains of arbitrary length, we assume shallow
hierarchies (five or less in most of our examples), which is sufficient
in several computer graphics applications. We approximate subtree
inertia using mass lumping, which gives us fast and stable real-time
large deformations rich in local detail. Our method supports in-
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Figure 2: Domain decomposition: (a) domains, (b) domain graph, (c) 48 domains (space station), (d) domain graph (space station).

stancing: a single object can be pre-processed once and replicated
many times (e.g., the branches and leaves in Figure 1), saving on
precomputation and runtime costs. Rigid domains (r = 0) are sup-
ported, and can be arbitrarily mixed with reduced-deformable do-
mains. The method also supports unanchored objects undergoing
free-flight motion.

2 Related Work
The idea to decompose a deformable object into several intercon-
nected components (domains), each of which can be simulated sep-
arately, is well-known in science. It is usually referred to as do-
main decomposition [Toselli and Widlund 2004], or, especially in
case of repetitive geometry, also substructuring [Dodds and Lopez
1980]. Many such methods do not employ reduction, but merely
divide the object so that each domain can be assigned to a dif-
ferent processor node, or data for repetitive substructures can be
reused [Ryu and Arora 1985]. Perhaps the simplest form to add
reduction to domain decomposition is to compute the static equi-
librium of each domain, under x,y,z perturbations of each interface
vertex, and then restrict the domain deformations to a linear com-
bination of those shapes (static condensation [Storaasli and Bergan
1987]). With complex geometry, however, interfaces themselves
can be high-dimensional, leading to a large number of basis vec-
tors and slow simulation times. Alternatively, one can compute the
linear vibration modes of each structure, under the boundary con-
dition that the interfaces are held fixed [Craig and Bampton 1968].
This method, called component mode synthesis, has been popular
with simulations of deformations of superstructures, most notably
in aerospace engineering (e.g., airplanes, space satellites) [Patnaik
et al. 1994]. These previous methods, however, only simulated
small, linearized deformations of each domain. It is not straight-
forward to extend them to large deformations because the resulting
large interface rotations seemingly require modes to rotate, which
invalidates precomputation. In our paper, we show how these obsta-
cles can be avoided, yielding a component mode synthesis method
supporting (1) large deformations within each domain, and (2) large
(finite) rotations of the domain interfaces. This makes substructur-
ing much more useful in computer graphics applications requiring
large deformations. Domain decomposition for deformable models
has also been previously applied in computer graphics, but only for
small domain deformations and with running times dependent on
the number of domain and interface vertices. For example, a linear
quasi-static application using Green’s functions has been presented
in [James and Pai 2002b], whereas Huang and colleagues [2006]
exploited redundancy in stiffness matrix inverses to combine linear
FEM with domain decomposition.

Deformable object simulation is a well-studied problem in com-
puter graphics. We review approaches for interactive FEM and
model reduction; please see [Nealen et al. 2006] for a general sur-
vey. FEM simulations with complex geometry do not run at in-
teractive rates. Interactivity can be achieved using multi-resolution

geometric constructions [Capell et al. 2002; Debunne et al. 2001;
Grinspun et al. 2002], employing co-rotational elasticity [Müller
and Gross 2004; Chao et al. 2010], the multigrid method [Georgii
and Westermann 2005], or by coarsening of meshes and their ma-
terial properties [Kharevych et al. 2009; Nesme et al. 2009]. In our
work, we employ model reduction, and demonstrate that whenever
the object can be decomposed into natural components, this can
provide deformation-rich real-time simulations. In computer graph-
ics, model reduction of nonlinear systems has been used for fast
simulation of deformable solids [Metaxas and Terzopoulos 1992;
Barbič and James 2005; Kaufman et al. 2008; An et al. 2008; Kim
and James 2009] and fluids [Treuille et al. 2006], and for fast con-
trol of such systems [Barbič et al. 2009]. One drawback of these
systems has been that the reduction basis is global in space. Wicke
and colleagues [Wicke et al. 2009] extended Treuille’s fluid reduc-
tion method to several inter-connected reduced domains. Their ap-
proach is similar in spirit to ours, but works for fluids and does not
directly apply to nonlinear elasticity. Our open-loop domain struc-
tures are related to recursive algorithms for articulated rigid body
structures [Featherstone 1987]. Featherstone’s algorithm has been
extended to small-deformation simulations [Changizi and Shabana
1988; Sharf and D’Eleuterio 1988], and deformable rods [Bertails
2009]. Our work, however, applies to 3D solid deformable objects
with irregular interfaces undergoing large deformations.

3 Kinematics
Our method uses reduction to simulate geometrically nonlinear
FEM deformations of a 3D volumetric mesh. Let a volumetric mesh
be decomposed into d connected and mutually disjoint sets of ele-
ments D1,D2, . . . ,Dd (the domains, see Figure 2). The common
surface where two domains i and j meet is called the interface, Ii j.
Although in principle an object could be decomposed arbitrarily,
domain decomposition is most effective when the domains form a
natural decomposition of the object, such as, for example, separat-
ing the space station modules, panels and antennas into separate
domains (Figure 2). In such cases the interfaces are often small
or deform mostly rigidly (see Figure 3, right), which we exploit
to define our low-dimensional kinematic model. We first form the
domain graph, where each domain is one node, and nodes are con-
nected if they share a common interface (see Figure 2). We assume
that there are no cycles in the domain graph (graph is a tree) and
that the tree depth is shallow, but place no restriction on maximum
node degree. We direct the graph by picking one domain as the
root node, which then uniquely directs all edges by traversing the
domains from the root to the leaves. We set the root domain to the
domain rooted to the ground for fixed objects, or a central/largest
domain for free-flying objects, which tends to minimize tree depth.

We simulate each domain as a nonlinear reduced-deformable ob-
ject, with its own specific reduced basis Ui of size ri ≥ 0. All our
reduced models are precomputed under the boundary condition that
the domain is held fixed at the interface to the parent, which is con-



Figure 3: Effect of system and interface forces: Left: Pulling on the small stem causes large secondary motion (bloom, leaves). Right:
relative deviation of the interface transformation Ai j from rotation Ri j (Frobenius norm, for all the 11 interfaces). The deviations are small.

sistent with the interface rigidity assumption. The deformation of
each domain is given as a linear combination of the modes of do-
main i, ui = Uiqi, where ui contains the 3D deformations of all the
vertices of domain i, for the reduced-coordinate vector qi ∈ Rri .
Deformations ui are expressed in a local frame of reference Fi of
each domain, which we define below. Frames are necessary be-
cause parts of the mesh may undergo large rotations, whereas modal
models are poorly suited to represent large rotations. At first, it
may seem possible to avoid frames by including all affine trans-
formations into each basis Ui. However, the remaining vectors in
Ui (the non-rigid deformations) would then need to be rotated syn-
chronously with the domain rotation at runtime, leading to a time-
dependent basis and a significant additional computational cost.

To define the frames, we first collect all individual vectors qi into a
global vector q ∈ Rr1+...+rd . The frame computation then proceeds
from the tree root to the leaves. Frame F0 is the world coordinate
frame for fixed objects, and the global rigid body motion frame
for free-flying objects. For each child domain j of domain i, we
define frame F j as the best fitting frame to the interface Ii j. We
do so by specifying its position xi j ∈ R3 and rotation Ri j ∈ R3×3,
relative to frame Fi, and expressed in the coordinate axes of frame
Fi, by fitting the best rigid transformation that transforms vertices
of interface Ii j from their rest positions to current positions given
by qi (see Figure 4). Let v1

i j, . . .v
m
i j be the vertices of domain i that

are on the interface to child domain j. We can weight the vertices
according to the surface area (or mesh volume) locally belonging to
each vertex, arriving at weights w1

i j, . . .w
m
i j. In domain i, each vertex

k deforms according to a 3×ri submatrix of Ui, denoted by Uk
i j. We

make xi j track the centroid of Ii j :

xi j =
1

∑
m
k=1 wk

i j

m

∑
k=1

wk
i j(X

k
i j +Uk

i jqi)≡ x̂i j + âi jqi, (1)

where Xk
i j is the rest position (in Fi) of vertex vk

i j, and the matrix
âi j ∈R3×ri can be precomputed. In order to fit the rotation, we need
to align the interface vertices to their deformed positions as best as
possible using a rigid transformation (after subtracting centers). We
do so by first computing the covariance matrix [Müller et al. 2005]

Ai j(qi) = Bi j(qi)C−1
i j R̂i j ≡ R̂i j +

ri

∑
`=1

A`
i jq

`
i , where (2)

Bi j(qi) =
m

∑
k=1

wk
i j
(
(Xk

i j− x̂i j)+(Uk
i j− âi j)qi

)(
Xk

i j− x̂i j
)T

, (3)

Ci j =
m

∑
k=1

wk
i j
(
Xk

i j− x̂i j
)(

Xk
i j− x̂i j

)T
, (4)

and the fixed matrices A`
i j ∈ R3×3 can be precomputed. Here, R̂i j

is the rotation of interface Ii j in the rest configuration, relative to

rest frame Fi. We then perform polar decomposition to extract the
best-fitting rotation Ri j:

Ai j(qi) = Ri j(qi)Si j(qi), (5)

where Si j is a symmetric 3×
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Figure 4: Fitting the best in-
terface transformation.

3 matrix. We note that rigid
transformations cannot be made
to fit deformable interfaces in
general, leading to discrepan-
cies in the domain meshes at
the interface. In practice, how-
ever, the interface transforma-
tion are often very close to
rigid and the discrepancies are
small (Figures 3, 8). Any
interface artifacts in embed-
ded triangle meshes can be re-
moved using MLS surfaces pre-
viously proposed for discontin-
uous FEM [Kaufmann et al. 2009], and we address this render-
ing issue in Section 5. If interface vertices lie in the same plane
in the rest configuration, matrix Ci j becomes degenerate. Let
0 ≤ λ1 ≤ λ2 ≤ λ3 be the eigenvalues of Ci j. If λ1 < ελ3 (we use
ε = 0.001), we modify the precomputation of A`

i j by adding an extra
point at x̂i j +ηN, where N is the eigenvector for λ1 (interface nor-
mal). The value η =

√
ελ3−λ1 increases the smallest eigenvalue

of Ci j to ελ3, and gave stable planar interfaces in our examples.

Once the root frame F0 and transformations (xi j,Ri j) are known for
all interfaces Ii j, we can easily compute world-coordinate expres-
sions for all frames Fi, i = 0, . . . ,d−1. We note that the frames Fi
are completely determined by q and F0; i.e., the frames are not sep-
arate independent simulation parameters. An alternative would be
to keep them separate and simulate the combined frame-deformable
system, but doing so would require constraints to keep the domains
connected, turning the system into a differential-algebraic equation
and leading to standard problems of constraint drift. Our construc-
tion, in turn, avoids constraints. In the next section, we shall derive
the dynamics that govern q, using a mass-lumped formulation run-
ning in time linear in the number of domains.

For dynamics, it is necessary to compute linear velocity vi j, lin-
ear acceleration ai j, angular velocity ωi j, and angular acceleration
αi j of each frame F j, relative to Fi and expressed in Fi, based on
qi, q̇i, q̈i. Linear quantities are simply vi j = âi jq̇i and ai j = âi jq̈i. To
compute the angular quantities, first differentiate Equation 2:

Ȧi j =
ri

∑
`=1

A`
i jq̇

`
i , Äi j =

ri

∑
`=1

A`
i jq̈

`
i . (6)

Next, we compute the first and second derivatives of the polar de-
composition rotation matrix Ri j with respect to qi. We derived a



general formula for Ṙ(t) and R̈(t), where R(t) is the rotation in po-
lar decomposition of a 3×3 matrix A(t) = R(t)S(t) that depends on
a scalar parameter t ∈ R (usually time, but can be any parameter):

G =
(
tr(S)I−S

)
RT ∈ R3×3, ω = G−1

(
2skew(RT Ȧ)

)
∈ R3, (7)

Ṙ = ω̃R, Ṡ = RT (Ȧ− ṘS), R̈ = ˜̇ωR+ ω̃
2R, (8)

ω̇ = G−1
(

2skew
(
RT (Ä− ω̃Ȧ)

)
−

(
tr(Ṡ)I− Ṡ

)
RT

ω

)
. (9)

Here, ω̃ denotes the 3×3 skew-symmetric matrix corresponding to
a vector ω ∈R3, i.e., ω̃x = ω×x for all x ∈R3. Similarly, skew(A)
denotes the unique skew-vector ω ∈ R3 so that ω̃ = (A−AT )/2.
The derivation of Equations 7-9 is given in Appendix A. Evaluation
of ω, Ṙ, Ṡ, ω̇, R̈ requires solving the 3×3 nonsymmetric linear sys-
tem given by matrix G. Because this system is nonsingular when-
ever A is nonsingular, which is the case for interfaces that deform
mostly rigidly, computing G−1 is stable. We can now apply Equa-
tions 7-9 to Ai j(t) = Ai j(qi(t)) and its time derivatives as given by
Equations 2 and 6, yielding ωi j and αi j. We note that such matrix
decomposition gradients have been previously explored for singular
value decomposition [Twigg and Kačić-Alesić 2010; Mathai 1997].
With SVD, singularities in the decomposition gradient occur when-
ever two singular values are equal, e.g., even if A is identity, and
would, unlike polar decomposition, require additional treatment.

4 Dynamics
We now give the equations of motion for q, under the kinematic
model of Section 3. These equations simulate the coupled motion
of all domains. Each domain follows the equation

Miq̈i +Diq̇i + f int
i (qi) = f ext

i + f sys
i + ∑

j is child of i
f itf
i j , (10)

where Mi is the reduced mass matrix (constant matrix), Di = Di(qi)
is the reduced damping matrix, and f int

i (qi) are the reduced non-
linear internal elastic forces of domain i. The terms f sys

i , f itf
i j , f ext

i
contain the reduced system forces due to motion of ancestor do-
mains, interface forces of child domains of i arising due to subtree
inertia, and external forces, respectively. Equation 10 is standard
in model reduction; it is obtained by projecting a full (geometri-
cally nonlinear) FEM deformable model to a chosen basis Ui. We
use the modal derivative basis [Barbič and James 2005] because the
computation is automatic and does not require any presimulation.

System forces: Equation 10 is expressed in frame Fi which is
non-inertial (accelerates through time). An observer rigidly at-
tached to Fi can correctly simulate deformations if she adds the
resulting system forces f sys

i to the equations of motion of her do-
main (see, e.g. [James and Pai 2002a]). Let X be a material point
in frame Fi. The world-coordinate velocity and acceleration of X ,
expressed in the coordinate frame Fi, equal [Shabana 2005]

v(X) = vi +ωi×X + Ẋ (11)

a(X) = ai +αi×X +ωi× (ωi×X)+2ωi× Ẋ + Ẍ , (12)

where vi,ωi,ai,αi are the world-coordinate velocity, angular veloc-
ity, acceleration and angular acceleration of frame Fi, respectively,
expressed in the frame Fi. The system forces are distributed vol-
umetrically throughout the domain. When projected to the low-
dimensional space of each domain, they are

f sys
i =−

∫
Di

ρi(X)UT
i (X)a(X)dV, (13)

where ρi(X) is mass density at X , Ui ∈ R3×ri are the spatially-
varying modes, and a(X) is acceleration at X . The `-th component

of f sys
i ∈ Rri , for ` = 1, . . . ,ri, can be expanded to

f sys
i` = W 1T

i` ai−W 2T
i` αi +(W 3

i` +qT
i W 4

i`)||ωi||2−

−(ωT
i W 5

i` +2q̇T
i W 6

i`)ωi−qT
i W 6

i`αi− (ωiω
T
i ) :

ri

∑
p=1

W 7p
i` qp

i , (14)

for constant precomputable coefficients W j
i` (Appendix B). Notation

A : B denotes component-wise matrix dot product. The evaluation
of f sys

i requires O(r2
i ) flops, and is fast in practice.

Interface Forces: We model reduced interface forces as

f itf
i j =−Mi jq̈i + f 0

i j, for (15)

Mi j = m jâT
i jâi j, f 0

i j = âT
i j

(
Ri j f ext

j − (16)

−m j
(
ai +αi× xi j +ωi× (ωi× xi j)+2ωi× vi j

))
,

where m j and f ext
j are the total mass and net sum of external forces

(expressed in F j) in the subtree rooted at j (call it D j). Note that m j
is constant and precomputable, but could vary at runtime, e.g., if do-
mains fracture, or are replaced (modularity). Equation 15 is similar
to Featherstone’s recursive terms. The terms Mi j and f 0

i j model the
mass inertia of D j, by assuming that the mass is lumped at Ii j. The
term f 0

i j also models the effect (to domain i) of external forces ap-
plied in D j. This approximation gives stable motion and keeps the
system matrix symmetric, and we found it reasonable for examples
with limited domain graph depth (discussed further in Section 5).

Integration: Equation 15 transforms Equation 10 into(
Mi +∑

j
Mi j

)
q̈i +Diq̇i + f int

i (qi) = f ext
i + f sys

i +∑
j

f 0
i j. (17)

We timestep Equation 17 in time linear in the number of domains.
The algorithm first constructs the frames for all domains, then
timesteps each domain using semi-implicit Newmark integration
for stability [Barbič and James 2005], and finally updates relative
frame kinematics (see Algorithm 1). The frame of the root domain
can be the world-coordinate frame if the root domain is fixed to the
ground, or its frame can be floating and affected by the forces and
torques of the subdomains for free-flying objects.

Algorithm 1: Multidomain reduced dynamics

Procedure Simulation timestep1

Input: values of q̂(k) = (q, q̇, q̈) and frames F(k) at timestep k,
external forces f ext,(k+1) at timestep k +1, timestep size ∆t

Output: values of q̂(k+1) and F(k+1) at timestep k +1
begin2

for all domains i, leaves to root do Assemble f ext
i ,mi3

for all domains i, root to leaves do4

Compute ωi,ai,αi,F
(k+1)
i (Eq. 11, 12)5

Compute f sys
i (Eq. 14)6

for all child domains j of i do7
Compute Mi j, f 0

i j (Eq. 16)8

Do a reduced dynamics timestep (Eq. 17), yielding q̂(k+1)
i9

for all child domains j of i do10

Use q̂(k+1)
i to compute xi j,Ri j,vi j,ωi j,ai j,αi j11

end12



Example vol-vtx vol-el rend-vtx rend-tri d r̂ D pre rt:core rt:StVK rt:total S ui = Uiqi fps
flower (tet) 2,713 7,602 6,675 12,868 12 240 3 0.6 min 22 % 78 % 6.5 msec 1 0.43 msec 69 Hz
SIGGRAPH (tet) 18,945 83,753 10,463 20,934 15 160 8 4.3 min 21 % 79 % 1.7 msec 1 2.5 msec 83 Hz
dragon (tet) 46,736 160,553 38,625 77,250 40 454 5 5.1 min 45 % 55 % 1.6 msec 3 7.0 msec 40 Hz
space station (voxel) 219,058 107,556 177,691 248,521 48 921 4 0.8 min 25 % 75 % 4.5 msec 3 25.5 msec 14 Hz
oak tree (tet) 262,363 626,734 578,801 838,704 1435 11,972 5 1.0 min 52 % 48 % 29 msec 1 12.2 msec 5 Hz

Table 1: Simulation statistics for #volumetric and rendering mesh vertices, elements and triangles (vol-vtx, vol-el, rend-vtx, rend-tri),
#domains (d), total # of reduced DOFs (r̂), tree depth (D), precomputation time (pre), #simulation steps per graphics frame (S), constructing
deformations for rendering (ui = Uiqi, once per frame), frame rate (fps), simulation step time (rt:total), and its breakdown in terms of
timestepping reduced dynamics of individual domains (rt:StVK) and the rest (rt:core, including polar decomposition, gradient and Hessian,
system and interface forces, frames). Machine specs: Intel Core i7-980X, 6-Core, 3.33 GHz, 10 GB memory. Only a single core was used.

5 Results

In our first example we show a complex oak tree (41 branches, 1394
leaves) deformed in the wind and undergoing large deformations
(see Figure 1). This example greatly uses substructuring, as the
leaves all use a single mesh (rotated and translated into the proper
place). The leaf mesh is pre-processed and reduced only once. The
copies use pointers to the single datastructure, leading to short pre-
computation times (Table 1). Similarly, the 41 branches only be-
long to 5 distinct classes, translated, rotated and scaled (uniformly)
into their place. Scalings can be handled efficiently by observing
that for a uniform scaling factor s, the basis matrix does not change,
whereas the frequency spectrum scales by 1/s. We also pursued in-
stancing in the space station example (Figure 6).

Figure 5: Our method supports localized deformations. End-
effector domains often deform most due to largest system forces.

Our pre-process is fast (Table 1) and automatic. The number of
modes in each domain can be chosen automatically, by setting a to-
tal number of modes r̂, and assigning to each domain the number of
modes proportional to its number of elements. One good choice is
a logarithmic distribution: ri ∝ log(#elements(i)) (dragon example,
Figure 5). The SIGGRAPH example demonstrates that our method
supports free-flying motion. This is achieved by pre-processing a
“free-fly” reduced deformable model [Barbič and James 2005] for
the root domain, and then using the external forces to integrate the
rigid body motion for the entire object. Our method supports rigid
domains (ri = 0), so it can combine rigid and deformable objects:
the 8 letters of “SIGGRAPH” are connected by 7 rigid links.

Figure 6: Instancing: The repeated panel copies are instanced,
and can all bend independently, as can all major structure parts.

Accuracy: Figure 7 compares our method to an unreduced
single-domain geometrically nonlinear FEM simulation (ground
truth). We provide a comparison to two variants of our method:
(L1) interface lumping (Equation 16), and (L2) center-of-mass
lumping where the mass of the subtree is lumped not at the in-
terface, but at the center of mass of the subtree. Method L2 can
be implemented by adding additional terms to Equation 16, guided
by Equation 12. The ground truth (G) was computed offline and
is 55x slower than L1 and L2. All three simulations use the same
material parameters, timestep, fixed vertices, and the initial condi-
tion: a velocity aligned with the first eigenmode of the entire mesh,
sufficient to bend the flower stem by about 45 degrees. We found
that the three methods give similar trajectories, but differ in oscil-
lation frequencies: L1 and L2 gave 2x and 1.5x higher lowest natu-
ral frequency than G, respectively. In general, reduced simulations
of solids lack detailed DOFs, resulting in small increases in nat-
ural frequency (“artificial stiffening”). With multidomain reduced
dynamics, however, the increase is largely due to mass lumping,
similar to how a pendulum with mass lumped close to the pivot
oscillates at a higher frequency than if the mass was distributed fur-
ther away. L2 matches G more closely than L1 because lumping at
the subtree center better approximates the actual mass distribution.

There is a pyramid of methods that model the subtree inertia pro-
gressively better, at the cost of additional implementation complex-
ity. All these methods take the form of Equation 15, but differ in
how Mi j and f 0

i j are computed. All examples in Table 1 use method
L1, which we found to be the simplest approach producing stable,
deformation-rich results. In L1, each domain feels the total weight
of the attached subtree, but not the rotational or deformable inertia.
Variant L2 improves the accuracy for physically long domains. In
some examples, however, we observed that L2 suffers from insta-
bilities; we attribute this to the quickly time-varying matrices Mi j in
method L2. At a significant additional implementation complexity,
one could compute correct, non-lumped subtree inertia for kine-
matic chains with arbitrary tree depth (cf. [Shabana 2005]). Such
Mi j and f 0

i j would fully parallel Featherstone’s algorithm, but may
require modifications to the integrator to maintain stability.

With uniform material parameters, small mesh parts (e.g., protru-
sions) vibrate at higher frequencies than the rest of the mesh, which
manifests as little or no deformations in those regions even with
the ground truth (unless poked explicitly). The frequency content
of each domain can be linearly scaled at runtime without redoing
the precomputation, simply by scaling the domain’s precomputed
reduced internal forces. In the flower example, we adjusted the
frequencies of the leaves so that the leaves gave interesting large
deformations when pulling on the stem. Similarly, we made the
horns, tail, spike and mouth of the dragon softer than the rest of the
mesh, to cause larger deformations in those regions.

Rendering: We render triangle meshes embedded into volumet-
ric meshes. Although the volumetric mesh for the entire object is a
manifold mesh in the rest configuration, the domains slightly sep-



Figure 7: Similar trajectories, but differing frequencies: Top
and middle: Bird’s-eye view on the trajectories of two flower ver-
tices: top of primary (A) and secondary bloom (B). Same scale used
for A and B. Rest and extreme poses are indicated. Ground truth
(G)=solid black, interface lumping (L1)=dashed green, center of
mass lumping (L2)=dashed red. Bottom: x-dof of A versus time.

arate at the interfaces under deformation. At first, we anticipated
this to be problematic – however, we found that it can be very eas-
ily handled with techniques similar to those employed in discon-
tinuous Galerkin FEM [Kaufmann et al. 2009]. We can establish
C0 continuity simply by averaging the two copies of each inter-
face vertex (see Figure 8), whereas C1 continuity could be achieved
via MLS embeddings [Kaufmann et al. 2009]. Once a consistent
volumetric mesh deformation is computed, it is transferred to the
embedded triangle mesh using barycentric interpolation. Because
our bases are local in space, computing the vertex deformations via
equation ui =Uiqi only involves matrices Ui with a small number of
columns, leading to small memory footprints and fast computation.

Figure 8: C0 embedding is effective with nearly-rigid inter-
faces: (a),(c): individual domain meshes, for two representative
deformations. Domain gaps (black) are generally small; most are
sub-pixel size. (b),(d): Mesh deformations with C0 continuity.

Decomposing the object into domains: We designed a sim-
ple user interface that enabled us to manually decompose the input
meshes into domains. The interface permits the user to select ver-
tices or elements, and add or subtract them to a domain. Once a
domain is created, the user can replicate it (instancing), or, given an
input triangle mesh (e.g., the oak tree mesh purchased online), our
software can automatically compute the necessary rest pose domain
transformations for the branches and leaves. The domain interfaces,
reduction bases and reduced nonlinear internal force coefficients are
then computed automatically in a manner of minutes (see Table 1),
permitting the user to iterate the decomposition and adjusting the
material properties. It would also be possible to decompose the
mesh automatically, e.g., guided by the modal properties of the ob-
ject [Huang et al. 2009], or by any of the many methods proposed
for this task in engineering [Farhat 1988].

6 Conclusion

We presented a real-time algorithm for simulations of reduced non-
linear flexible multibody systems undergoing large deformations.
The algorithm was made possible by deriving the first and second
time derivatives of the rotation matrix used in polar decomposi-
tion. The algorithm supports localized deformations, requires no
constraints, and runs in time linear in the number of domains.

Limitations and future work: Our work is limited to domain
topologies without loops. Several bodies connected and rooted
to the ground form a loop, and must be simulated as a single do-
main in our system. Loops could be closed by adding springs; or
more formally, using extensions paralleling those for rigid articu-
lated chains [Featherstone 1987]. We assume that the domain inter-
faces undergo only a small amount of non-rigid deformation. This
assumption is valid when the interfaces are small, and worked well
in our examples. Flexible interfaces could be simulated by adding
additional “boundary” modes to each domain [Storaasli and Bergan
1987]. Related to that, it may seem plausible to add additional terms
to the equations of motion that would explicitly couple the elastic
deformations of two domains meeting at an interface. Note that
for strictly rigid interfaces such terms are identically zero, and that
any external forces already are properly propagated to parent do-
mains via our interface forces. Our algorithm was implemented on
a single-core and without GPU computation. Multi-core extensions
could map each domain to a separate core, especially when the do-
main graphs are free of long kinematic chains. In our work, frames
follow the motion imposed by the parent exactly, without any free-
dom for deviation. Some of the six degrees of freedom could be
relaxed by introducing joints, which would lead to a method sup-
porting both articulation and large deformations.
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A Polar Decomposition Rotation Gradient

Let A = A(t) be a 3× 3 matrix that depends on a scalar parame-
ter t ∈ R. For any t, one can perform polar decomposition, A(t) =
R(t)S(t), where R is orthogonal and S is symmetric positive semi-
definite. Fix t0 ∈ R. We first shift the problem by defining

B(t) = RT(t0)A(t) =
(

RT (t0)R(t)
)

S(t). (18)

Because RT(t0)R(t) is identity for t = t0, its derivative at t = t0 must
be a skew-symmetric matrix ω̃ for some ω ∈R3. By differentiating
Equation 18 by t, and setting t = t0, one obtains

Ḃ(t0) = RT(t0)Ȧ(t0) = ω̃S(t0)+ Ṡ(t0). (19)

We now replace t0 with t, and apply the skew operator (Section 3)
to both sides of Equation 19. This causes the symmetric term Ṡ
to drop and yields 3 linear equations for the 3 components of ω

(Equation 7). In order to derive ω̇ and R̈, differentiate both sides of
Equation 7 with respect to t (note that G and ω depend on t). After
rearranging, one obtains a 3×3 linear system for ω̇ (Equation 9).

B System Force Integrals

The constants of Equation 14 are integrals over each domain Di :

W 1
i` =−

∫
Di

ρU`
i dV ∈ R3, W 2

i` =
∫
Di

ρX̃U`
i dV ∈ R3, (20)

W 3
i` =

∫
Di

ρU`T
i XdV ∈ R, W 4

i` =
∫
Di

ρUT
i U`

i dV ∈ Rri , (21)

W 5
i` =

∫
Di

ρU`
i XT dV ∈ R3×3, W 6

i` =
∫
Di

ρUT
i Ũ`

i dV ∈ Rri×3, (22)

W 7p
i` =

∫
Di

ρU`
i U pT

i dV ∈ R3×3, (23)

where U`
i ∈ R3 is the `-th column of mode Ui(X) ∈ R3×ri .
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